Unit 1: Central limit theorem and diffusion

Introductory remarks: What is Statistical Physics?

Mathematical sciences such as physics aim to determine the laws of nature
and understand how these govern experimental observations—both in everyday
circumstances and under extreme conditions. This mathematical understanding
is typically guided by reproducing a set of observations, with the resulting frame-
work then used to make predictions for other “observables”.

Over the past few centuries this process has been tremendously successful,
with theoretical physics accurately predicting experimental and observational re-
sults from sub-atomic through to supra-galactic scales. Modern physics labs can
create a vacuum better than in outer space and the coldest temperatures in the
known universe, as well as going to the other extreme to reach temperatures of
millions of degrees and pressures millions of times atmospheric pressure at sea
level. Amazingly, many aspects of these realms of physics can be theoretically
described by mathematics developed centuries ago.’

Statistical physics is one domain in which simple mathematical principles
enable amazing predictive capabilities. Initially developed in the nineteenth cen-
tury, statistical physics remains a pillar of modern physics, and will retain this
position in years to come. The foundations of statistical physics lie in the use of
probability theory to mathematically describe experimental observations and cor-
responding laws of nature that involve stochastic randomness rather than being
perfectly predictable.

The lack of perfect predictability in statistical physics is a matter of practi-
cality rather than one of principle. It results from working with a large number
of degrees of freedom—that is, a large number of independent objects such as
atoms. For illustration, Avogadro’s number N, ~ 6.022 x 10% is the large num-
ber of molecules in everyday amounts of familiar substances—about 18 grams
of water or about 22 litres of air at sea-level atmospheric pressure (=101 kPa).
Specifying the positions and velocities of ~10? objects would require far more
information than could be stored even in the memory of the biggest existing su-
percomputers. Statistical physics instead produces simple mathematical descrip-
tions of large-scale properties such as temperature, pressure and diffusion, which
are generally of such outstanding quality that the underlying ‘randomness’ is ef-
fectively invisible.

Historically, the difficulty of detecting the stochastic processes underlying
such thermodynamic properties made it challenging to convince skeptics that
atoms and molecules really exist. Ludwig Boltzmann, a prominent early devel-
oper of statistical physics, endured a constant struggle to defend his ideas, which
likely contributed to his deteriorating mental health and eventual suicide in 1906.
A crucial advance to convincingly establish the existence of atoms was Albert

'Eugene Wigner's famous article, “The Unreasonable Effectiveness of Mathematics in the Nat-
ural Sciences” (1960), and subsequent work in the philosophy of physics, elaborates on why this
may be considered ‘amazing’. These lecture notes will not comment extensively on philosophy.
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Einstein’s use of statistical physics to explain the observed “Brownian motion”
of particles suspended in fluids—this work was part of Einstein’s “miracle year”
in 1905, along with special relativity and early contributions to quantum physics.
More recent applications of statistical physics include explaining why stars don’t
collapse under the ‘weight’ of their own gravity, and identifying effects of dark mat-
ter in temperature fluctuations observable in the cosmic microwave background
lingering from the early years of the universe.

In this unit we will focus on some of the foundational mathematics that will
underlie our later development and application of statistical ensembles. Looking
back to Boltzmann’s times, we can consider the following question one of his
opponents might have asked: If the pressure of a gas in a container results from
molecules stochastically colliding with the walls of that container and pushing
them out, then how can the pressure be so stable and reproducible, rather than
itself fluctuating stochastically? The mathematical answer lies in the law of large
numbers and the central limit theorem, which we will learn and apply to the
physics of diffusion in one dimension.

1.1 Probability foundations

We begin by building a more formal mathematical framework around the
concept of probability, through a sequence of definitions.

First, a random experiment £ involves setting up, manipulating and/or ob-
serving some (physical or hypothetical) system with some element of random-
ness. Flipping a coin is a simple random experiment. In the context of the statis-
tical ensembles that will be the focus of this module, a typical experiment will be
to allow a collection of particles to evolve in time, subject to certain constraints.

Each time an experiment is performed, the world comes out in some state w.
The definition of the experiment and the state must include all objects of interest,
and may include more besides. When flipping a coin, for example, the full state
could contain information not only about the final orientation of the coin, but also
about its position—did it land on the floor or on a cat?

The set of all states Q collects all possible states w that the given experi-
ment £ can produce, and is therefore intricately tied to £ itself.

We are generally not interested in all aspects of the full state w. For example,
we won't care where a flipped coin lands. Instead we're typically only interested
in whether it lands heads up or tails up—and we may want to set aside any state
that doesn’t cleanly map on to those options. The measurement X (w) extracts
and quantifies this information, acting as a function that maps the state w to a
number that we can mathematically manipulate. If we repeat a fixed experiment
£ many times and carry out the measurement X on each resulting state w, we
will obtain a sequence of numbers X (w) that behave as a random variable.

Acting with the measurement X on all of the possible states in the set 2
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defines the set of all outcomes (or outcome space) A:

X: 00— A

That is, A collects all possible measurement results that the given experiment £
and measurement X can produce. A can be finite, countably infinite, or uncount-
ably infinite (i.e., continuous).

Let’s consider some examples to clarify these definitions. With an experi-
ment of rolling a six-sided die and measuring the number (1-6) that comes out
on top, what is the set of all outcomes A? What additional information could be
present in a given states w?
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What is the outcome space A if we toss a coin four times and each time measure
whether it lands heads up (H) or tails up (7)?
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What information could characterize a state w for a gas of 10** argon atoms in a
container? What might be interesting to measure?
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We can generalize the concept of measurement by introducing a unique
number as a /abel to characterize each state w in the set Q. This would provide
a label function L(w) as a random variable. Our condition of uniqueness makes
L(w) isomorphic, so that the label can be used interchangeably with the full state,

w — L(w).
While the measurements X (w) we consider will generally not produce a unique
number for each w, we will design them precisely to remove irrelevant informa-
tion that doesn’t interest us. Ignoring that irrelevant information leaves us free to
interchange the set of outcomes A for the set of states (). (Some textbooks may
never distinguish between A vs (2 in the first place, though this can be a source
of confusion.)

Only a couple of definitions remain. The next is to define an event to be
any subset of the set of all outcomes A. For example, events resulting from
rolling a die could include (i) rolling a 6, (ii) rolling anything but a 6, (iii) rolling any
even number, and many more. Collecting all events of interest defines the set of

events (or event space) F.

We are now prepared for the final foundational definition in this section, the
probability P of an event in the set 7. Mathematically, P is a measure function,

P:F—0,1], /

which must satisfy the following two requirements:

1. The probability of a countable union of mutually exclusive events must equal
the sum of the probabilities of each of these events.

2. The probability of the outcome space (F = A) must equal 1 (even if A is
uncountable). This simply means that the experiment £ must produce an
outcome. If no outcome were produced, it would not make sense to say that
the experiment had occurred.

Combining the outcome space, event space and probability measure gives us a
probability space (A, F, P).

For example, consider an experiment that can only produce N possible
states, so that
O ={w,ws, -+ ,wn}.

If two states are identical, w; = wj, they must produce the same measurement
outcomes X (w;) = X (w;), which implies the contrapositive

X(wi) 7£ X(wj) = w; 7é Wj.

On the other hand, as described above, it is possible to have X (w;) = X (w;) even
when w; # w;. This means that the size n of the outcome space A may be smaller
than the size of 2, n < N. We can write

A= {XlaX27"' >Xn,})
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