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‘We obtain the result

>
Qc assica L
- ITSC 1 =In Zlassical = Z exXp (
=1
matching the high-temperature limit of the Bose gas on page 121.
We can again compute the average particle number
(N) =~ T2 2 o FpE+BA)
T2 on o tPhr s
ﬁ - ZL < l/\(‘[)>
TR Z exy (-, < ) ol
7= el
We again obtain (N) = Zle (ng), but now with the classical average occu-
pation number
<n§d)> = exp (—fEy + Bu) .
\
Recalling the expression for the quantum Bose gas, i)
(4
1 - S—F < >

<ngbose)> _ oxp (BEe— B = ik CX\O ( 611 ﬁM)

we see that classical physics is recovered in the high-temperature limit where
B(Ep — 1) > 1 makes the exponential factor much greater than 1.
et

121 Addendum 2 page 2
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/
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AT e exp 26+
f=

but room temperatures are usually considered to be very high. This explains
the tremendous success of the classical statistics for everyday life settings.

FERMI GAS

We are now going to study a gas of fermions in a volume V. We again
consider the setting of a grand-canonical ensemble. If we now sum over the
micro-states, we need to take into account that there is at most one fermion
per energy:

M M
Zfremi = Z exp{_ﬁainni + ,B,LL ni} .
i=1 i=1

n1=0,1 npr=0,1

Following the lines above, we carry out each sum and arrive at: the co-called

Fermi Statistics: .
e Staitcs P
. N i Ei—u £
._,)/—— = liZpmm = ; In l:l + exp <— zT >} ; (80) o W;?ﬂ e
As in the classical physics case, we arrive at a sum over all energy levels, but
now with different terms (compare with (78)). W U~>=1o | .
If we again consider the case of high temperatures T > F;, we find: - T » 2
e i s v s
M
B —
In Zfe'rmi — ; exp (“ zT ‘u) = In chassical .

It is quite remarkable that in the classical high temperature limit the differ-
ence between fermions and bosons disappear, which is probably one expla-
nation why it took some time to discover this quantum feature.

8.1 Gas of photons and the Maxwell distribution

The energy of a photon is determined by its wavelength \ or by its (angular)
frequency ? w = 2w ¢/)\. Its energy is given

———

]’lf!}’SiJ I'V]’Wl-/: Epp = hw = hc\/ﬁ, (81)

12¢ is here the vacuum speed of light, which is sometimes set to ¢ = 1 by a redefinition
of units.
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Addendum: High-temperature limit of the Fermi gas

As before, let’s compute the average particle number from the grand-canonical
potential to explore the high-temperature limit of the Fermi gas 4¢%itr. La-

belling the energy levels E, with £ =1,--- , L, we have
L
Qfermi =—TIn Zfermi =-T Z In [1 + exp (_BEE + ﬁ:u))] )
e=1
o9 > D
o T £ 9 | (+gA(~E*ﬁM]
) =-Fr= T £ & i+ eg (P Fu)
oxp ("BG ¢ Fu)
N [+ cx(;(”ﬁ@*}’ﬂ)
L
d=|
The behaviour of the resulting averdge occupation numbers is very different
than for the Bose gas:

1
~ exp (BE— Bpf DL
This ranges between 0 (when the exponential factor is very large) and 1

(when the exponential factor is very small), consistent with our quantum
physics input that there can be at most one fermion per energy state.

(re)

Even though there is no longer any possibility of a divergent (n,), we still
need —p > T >> E; in order for the sum total (N) = Y1 (n,) to satisfy the
grand-canonical constraint on total particle number. In this limit we again

recover the classical <ng°1)> = exp (—BE,; + Bu), because the S(E, — p) > 1
makes the exponential factor much greater than 1.

Lng¥ wxp (- BE, t B) = chgsial case

122 Addendum page 1
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The figure below!'? shows an average occupation number for the Bose, Fermi
and classical (Maxwell-Boltzmann) gases, demonstrating how all three dis-
tributions approximately agree even when —p /7 is not all that large. (The
constant k converts between units and can be set to k = 1.)

T
Bose-Einstein

\ Maxwell-Boltzmann C. 1459«'(4(

Fermi-Dirac

4
@I)IKT —U i 8 wE
- e
Clqss,"cq( !rm1+ E Mal/(/ Md:: grm,\[[c[gs
(qmwo)/ll WQM}/ 1y ?WL
&gy Yo m<ﬁ1 V“VJ“‘"JQ)
BSource:

commons.wikimedia.org/wiki/File:Fermi-Dirac_Bose-Einstein_Maxwell-Boltzmann_statistics.svg
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where k is the wave vector. If the photons are confined to a volume V, the
allowed wave vectors are i .
IV\‘{'&}LV m;

2 2T 2 y
(ks Fogs B2) = @ml, 7 May fmg) ; =198, V=1

We have now arrived at our energy spectrum:

w
Epi = hw = hC‘\/EQ(nll,’N'Lz,ﬂ?;g) , i = (my, mg,m3) .

—_—

Photons have an additional quantum number, i.e., polarisation, implying
that each energy level is twice degenerated.

We have already done a good deal of the calculation and can now just use
the Bose Statistics (79) to get the partition function:

oo = @R |- e (- ) |

The factor of 2|We consider large volumes so that we can approximate the
sum by an integral using the leading order of a Poisson re-summation (we
have studied this in detail with the exercise sheet on page 150):

E N
leph = —2/dml dmeo dms In {1 — exp (_ _E’T—M>:| .

With a simple substitution:

< /L_~
d i Zwg, dk(
™

I Zpn -1(2_)3 ( db, dh dhs 1, [1-e (a:t,u)

we find:

d*k hck — p
b = 20 [ ow (552
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ko
The integral only depends on k =
as integration variable:

=

k2, which suggests to use the frequency

w = ck, &k — illrdkkg = c—3dww2, ~tr -

Altogether, we arrive at:

# %0 _
’:% = InZ,; = — i / dw w? In {1 — exp (— Eu__;)%] . (82)

3 mr?

Physics input: Photons can be easily created e.g. by charged particles
collisions. Hence, adding a photon to a box of photon a gas is generically M =(
adding a negligible amount of energy to the systems. Hence, a gas of photon

is well described by a vanishing chemical potential, i.e., u = 0.

We are now in the position to calculate thermodynamical observables. We
adopt the case 1 = 0. We-leave-detailed tio o OXOECISe-S

Internal energy of a photon gas:

b - L [a e
0

A2 s exp (&) — 1 b ’ exp{z} —1
%
~ 15h3c3 (83)

We observe that the energy density increases like T with temperature, i.e.,

(EY UV o T

From which (small) frequency intervall rises the most important contribution
to the internal energy of a photon gas?

To answer this question, we introduce the spectral density P(w) by

{f)i?] = /de(w), Pluy = L i

Arlexp (&) — 1

3

(84)

P(w) is called the Planck spectrum.
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DISCUSSIONS:

The Planck spectrum as function of the wave length A\ = 27c/w:

10 [ ultraviolet | visible infrared 1
ulravioet

/)

Intensity / (arb. units)

The Planck Distribution function (Source: E. Schubert, Light Emitting Diodes).
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Spectrum of our sun:

Spectrum of Solar Radiation (Earth)
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Spectrum of the night sky (not from the stars): The Cosmic Microwave

Background temperature fluctuations from the 7-year Wilkinson Microwave
Anisotropy Probe data seen over the full sky.
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Cosmic microwave background spectrum (from COBE)
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