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Key Definition: The derived quantity

1 08
o el , 71

is called chemical potential. 1t is related to the change of the entropy of a
statistical system by adding a particle to the system while keeping its energy
constant.

This is a defintion that hinges on the “big” system, which is specified by
the overall energy E and the total number of particles D{; It also contains
a reference to the number of boxes N. It would be convenient to have an
expression for the chemical potential p that only depends on “small” box
properties. This can be indeed achieved.
Assume that we have calculated the entropy, which is consequently a function
of & and N):

S = S(B,Ny). (72)

If we solve this equation for F, i.e.,
E = E(S,N,) ,

we can use the latter to replace E as variable in all sort of equations. Hence,
S and N, are becoming our new independent variables. The constraint (68)
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We then find:
a(E)| 1 dE(S,N,) / .
N, s = NN, s S : constant. (73)

We the differentiate (72) by N, and keep in mind that S is constant:

_ (95
— \OE

a5
N,/ dN,

Using the definition of temperature and chemical potential, this becomes:

—_
=

l
=X — — Ng.
"=xay, ~VF T
Using this in (73), we finally obtain: :_l‘!. m
O(E)
= 4
ON, Is kTd)

Interpretations:

e The chemical potential is the change in internal energy when we adia-
batically (without changing its entropy) add a particle to the system.

e Above, we still have S and N, as independent variables. We can,
however, now use some constraint equations and express S and N, as
a function of p and 7'. In this case, p and 7' are becoming the two
independent variables.

Z, (T, o)
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Supplement: The grand-canonical potential

We now have the grand-canonical partition function Z, (7', p) defined with no
explicit reference to the heat-bath or particle reservoir. Their role is simply to
set the temperature T' and chemical potential i that characterize the “small”
system in the grand-canonical ensemble. Similarly to the Helmholtz free
energy considered for the canonical ensemble in Section 3.2, it is convenient
to define a quantity related to the logarithm of the grand-canonical partition

function.?

Key definition: With Z (T, i) the grand-canonical partition function, the
grand-canonical potential is

QUT, p) = —TlnZ,(T, 1) (74-S1)

Analogously to the Helmholtz free energy, derivatives of the grand-canonical
potential are related to the internal energy (F), the average particle number
(N) and the entropy S. Let’s first consider the derivative with respect to the
chemical potential:

J0. ""‘-2—2,% L,a— w/f)

T RN T ,
Moo Lo Ve
_ (1 N ex ¢ ) = “</V>
- —ﬁ:% 2«9 ii*:( ‘ ?( T
We find (T 1)
(N)(T, 1) = o

10The grand-canonical potential is sometimes called the “Landau free energy” to high-
light its similarity with the Helmholtz free energy.

107 Supplement 1



ﬂg,'(’)w 2o

The derivative with respect to the temperature is a little more complicated
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To interpret this, let us recall the fundamental definition of the entropy (now
also a function of 7" and p):

M
S(TJL) = —szhl]% pi = Zie p{_Ei _T/LNi.}
Mmoo -
> = Z T . - /AA/k - Zoa — & M -
S -5 % q J[-ln7y - & CLn)
2L
= “ /L > — .ﬂ. Y= 2 =
L 4o AL
T T MR
This tells us two things:
S(T\p) = —aﬂgl 2
T, p) = =T - S(T, ) + (ENT, ) — p(N)(T, ).
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Finally, to extract the internal energy (E)(T, 1), we neeA) consider

Oz (T,p) O [Q(T,u)] (L
oT S or T B

| 5 _ -5 -5
._f—:- + o —_— = ..—,(;n_——
70T T

Rk -2
— = /"'L /(_7’

CEY =T [ F ]+ mdd

In summary, we find the following:

T g AT 1 Y W Uk & 3 Z 3 B
Key observations: With Q(T, 1) the grand-canonical potential

\ )

0T, 1)
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We already said in section 5.1 the sum over all states is not the same as
the sum over all particles. In classical Newtonian mechanics (see the “ideal
gas”), the only characteristic was the energy: the sum over all micro-states
then became a sum over all energies.

We then noticed (see section 5.1) that the sum over all micro-states is actu-
ally badly defined for continuous degrees of freedom: the energy of a gas in a
box of volume V can be any real number, the sum would involve to count all
real numbers, which is mathematical impossible. At this point, we encounter
quantum physics: a particle in a box still has an infinite amount of states,
but those can be counted.

COMMENTS:

e Although quantum mechanics came to the rescue, the sum over all
energies is still considered classical physics. It makes the assumption
that micro-states are labelled by the energy, and quantum statistical
physics is more subtle than this.

e We have the developed the mathematical apparatus of Statistical Physics
in the sections 3,4, and 6. The only new element here will by the defi-
nition of micro-states for the quantum case.

In the following, we will study the quantum statistics of non-interacting
particles. Particles could be traditional matter particles such as electrons or
photons - the particles of light.

Our starting point is an energy spectrum consisting of discrete (countable)
energies I;; some of the energies can be the same: we say that this energy

JC }U’l‘l‘/‘fg { level is degenerate, but we still account for them here with different labels .

Cla“i(“\

Z4

In classical physics, micro-states are characterised by these energies and, e.g.,
the grand-canonical partition function is given by
SrafC-CanonIca

M
chassicﬁz exp{—ﬁ Z Ej\ + B H N} s (78)
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While classical physics can be an extremely good approximation (as we will
find below), the underlying defintion of micro-states in nature is different.
Here, we map, say N, particles, to the energies:
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Physics background: If particles are indistinguishable, they can be ex-
changed without changing physics observables. We say that 'swapping’ two
particle is a symmetry. The quantum physics framework implies that parti-
cles can then be labeled by ’quantum numbers’, rising from the representa-
tions from the corresponding symmetry group. The case of the “swapping
symmetry” leads to a binary characterisation of particles: we say particles
are either fermions or bosons. Well known examples are electrons, which
are fermions, and photons (particles of light), which are bosons. Another
particle, which recently came to fame, is the Higgs boson, who is the only
‘matter’ particle (so far) that is a boson.

Physics input: (non-degenerate) energy states can be populated by
any number of bosons, but only by at most one fermion.
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Definition of the quantum statistical ensemble:

e The quantum statistical ensemble of non-interacting particles is defined
by an energy spectrum E;, i = 1...M (M can go to infinity) and by

Wﬂfor each energy.
M 0/ B - e n; € Ny for bosons and #; = {0, 1} for fermions.

T

\|

e The total energy F of the (non-interacting) system is given by:

b= ZE’ T
Aoty
Mi(ns*ql‘e oty s}a{}, or ww)y lcw‘

BOSE GAS

Let us consider now a gas of bosons in a volume V. We consider the sit-
uation that this volume is immersed in a bigger system and that we allow
energy exchange (heatbath characterised with temperature 7') and particle
exchange (particle reservoir characterised by the chemical potential u). We
have studied the mathematics of the so-called grand-canonical ensemble in
detail in section 6. The partition function is given, as usual, by the sum
qver all micro-states, which is now a sum over all mappings of particles to

energies:
l l E . W, / oo oo M
EW?)’ ewt | Zpose = Z oo Z eXp —,B, Z Ein; + B K Z T
o how G e L E
EW?Y . We can carry out one sum after the other: f f
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We finally obtain the sometimes called Bose Statistics;

# M L
@Zbose =" I {1 — exp (— ElT “)] . (79)
i=1

As in the classical physics case, we arrive at a sum over all energy levels, but
now with different terms (compare with (78)).

Let us consider the case of high temperatures T > E;, for which we can

assume >
i — [
S — 1.
exp < T > <

We then can use the leading odder of the expansion:

—In(1—2) = 2 + O@%,
and find:

M E —
In Zpose = Z exp <_ 7‘{T M) = In Zgassical -
i=1

We make the important observation that we recover the classical physics
result at high temperatures. It depends, of course, on the energy spectrum
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