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The following calculatjon should be familiar from a analogous one in subsec-
tion 4.1. Inserting (6 ) into the entropy equation (63) yields: =~
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We defined the temperature in (11), which we recall here:
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After a short calculation:
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we find that for the Lagrange multiplier £ the same expression as before (see

(22)):
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We still have to find a meaning for the last remaining Lagrange multiplier j.
We calculate:

e ﬁ(E’ NP) : (70)
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This is a defintion that hinges on the “big” system, which is specified by
the overall energy E and the total number of particles N,. It also contains
a reference to the number of boxes N. It would be convenient to have an
expression for the chemical potential p that only depends on “small” box
properties. This can be indeed achieved. \
Assume that we have calculated the entropy, which is consequently .M e
of E and Ny

= S(E, N,).
If we solve this equation for E, i.e.,
E = E(S\Ny),
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S and N, are becoming our new independent v:



