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RECAP

The figure below shows the Carnot Cycle in the p-V-diagramme.
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Consider pa, Ty and the volumes V4, Vi and V, as given. Assigning input
to variables is quite tedious, since picking the wrong combination of vari-
ables could easily lead to inconsistencies. The above choice is inspired bya
real experiment: we start at state A at normal condition with p4 the atmo-
spheric pressure, Ty the temperature of the surrounding and V4 our volumen
initially. We then slowly expand (isothermal) until we reach Vz. We then
rapidly expand (adiabatic) until we reach Vi. The temperature and pressure
at B and C is what we could measure, and, hence, we should be able to cal-
culate those. We then slowly compress (isothermal) until we reach Vp and
then rapidly back to V4. We cannot just give a value for Vp, since if we pick
this value wrong, we would not getting back to V4 with the final compression.
This is telling us that we need to calculate Vp in order to complete the cycle.

A

WORKED DETAILS:

e Calculate at each of the points AB,C,D whatever is missing from:
volume, pressure, temperature.
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Let us now calculate the work delivered to the internal energy of the gas

Stage 1: from A — B
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Stage 2: from B — C' 7
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Stage 3: from C — D /
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Stage 4: from D — A

A
Wey = - SW‘V" - EW+ E.(0)
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Stage 1: isothermal

NT A%
AW, = —pdV , p = VH, AWy = -NTy -,
74
Wi, = —NTy In <%> = —paVy In <%>

This is negative meaning that the gas is doing the work |W;| (engine!).

Stage 2: Adiabatic
Since there is no heat flow, the work done to the gas is directly given by the
change in the internal energy:

B I Y B V' \ 2/®

3 v\ e
a0 / — =
21),4‘A <1 <VC> )

Again this part of the cycle delivers work.

|

Stage 3: Isothermal again (see stage 1)

Vo qy Vb VB
I/V3 = —NTL /VC ‘—/ = -—NTL hl<-‘-/,—c-> = NTL lll(ﬁ)

This is positive and energy (work) is delivered to the gas.

Stage 4: Adiabatic again (see stage 2)
1’V4 = EL(A) = EL(.D) = g]\f (TH s TL) = —VVQ 3

The energy that the gas looses at stage 2 is exactly regained through the
process at stage 4.
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The total amount of work delivered to the gas throughout one Carnot cycle
is hence given by: Win Waoe Weo0 Wiy

W =W + Wy + W3 + Wy.
Using W5 + Wy = 0 and the explicit expressions for Wi and W3, we find:

= T 4 VB
W = —=NTyg—-T11) In <E> = —paVa <1 — E) In (E) (59)
/A% Vs MW?
= —paVa {1—-|— In{—]. = 2
e (1- (7)) m(2). <O = g ;
Let us now study the heat flow in each stage. The key equation is C4:

dE; = d@Q + dW, aw = —pdV .

Stage 1: The internal energy is a function of the temperature only, i.e.,

E; =3/2 N T. This means that during an isothermal process - expansion or

compression - the internal gnergy does not change: dFE; = 0. We therefore
find: (§o Lz\e/""“”e }9

0/= dQ + dW , = o= sl

Remember, W; < 0, i.e., the gas is doing work, and therefore @; > 0, i.e.,
heat is flowing into the gas.

Stage 2/4: Those are adiabatic processes: the entropy is constant:
gig= 0 = d@Q) = T dS <0:
No heat exchange takes place: Q2 = Q4 = 0.

Stage 3: It is an isothermal again:
Qs = —Ws.

This time, W3 > 0 and the gas was receiving work. As a consequence, Q3 < 0
and heat is flowing out of the gas container.
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Definition: The efficiency 7 of a thermodynamical engine is defined by

= I/Vdoma/ Qin )

where Wy, is the work delivered by the cycle and @), is the amount of heat
flowing into the gas.

For the Carnot process, the container was receiving heat only during stage
1
Qin = Q1 = — W

Remember that W was the work delivered to the gas. Hence, we have:
I/Vdmm = —-W!

We therefore find:

N e " ;/,54 (e~ Q-

-/ %
T !

5 ;b-v- MA

Altogether, we find the important result

g
=1 — T—L (Carnot cycle).
H
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COMMENTS

e The higher the temperature difference, the more efficient is the ther-
modynamical engine.

e If we reverse the order of the stages of the Carnot process (all calcula-
tions remain the same), the gas is receiving work and transports heat
from the cold to the hot reservoir. This is what a refrigerator does!

e In winter, a refrigerator works better in the kitchen than in the garage
since the temperature difference between inside and the surrounding is
bigger.

e From all thermodynamical cycles, the Carnot process has the best ef-
ficiency'® If for some reason, Ty and 717, approach each other, all ther-
modynamical engines stop working.

10We have not discussed this here. A derivation can be found e.g. in the textbook [1].
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6 The grand-canonical ensemble

6.1 The particle reservoir

haiC 1o Starting point is always a statistical ensemble characterised by a number of
states wy, wa, wy ..., wy;. We then add physics information: e.g. that the
(G bunc Cévz total energy F or the particle number N of the system is conserved.

We then introduced the thermodynamical equilibrium: each of the M micro
states w; has the same probability ¢; = 1/M to occur. We then introduced an
extremely useful quantity, which helps to understand the statistical systems

- the entropy:
M

SEYN) = —Zq.,-_ Ing; = InM .

i=1

In general, the entropy is a function of the conserved quantities.

Z
Example: |\)=2 ( = ZM: 7 :C/

o [} =]
o 1} e |

We have used the above graph for an illustration in subsection 4.1.

We the took a different angle of perspective and have consider the above
prototype of a system surrounded by many identical system.
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[CU\OM N M'g/

We then allowed an energy ex-
I T l 1 l 1 change between those systems.
We say that our “small” system is
immersed in the big system, which

nimmEkEsEs
V|

We still are interested in the properties of our “small” system: now, the
energy of our small system is not conserved anymore, but we can define the
average of the energy as internal energy of our small system, i.e.;, (E), with
is a function of temperature 7" and particle number N of boxes.

“ In subsection 4.1, we found a clever way to describe a clever mathematical
way to describe the whole of the system - occupation numbers: n; is the
number of the state w; realised in any of the boxes. This also tells us some-
thing about our small system. n; divided by N, the number of boxes, is an
estimate for the p; of finding state w; realised in our “small” box.

We then were able to work out the entropy of the whole system as as function
of the total energy (which we repeat here for later use). _
y e, ILL\Q Vol

M
S(B) = -N Y plp, == Mak (60) “u..

TRIEL o
=1 i=i {—of—gé ‘4"‘2‘)’7: CVO"‘»S[»(‘; ﬁ

M
Y piE = NZ71,5E.,- — E/N. (62)
i=1 ]

Eq.(61) just tells us that the number of boxes is N, and (62) is saying that
the energy of the whole system is F.
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We the used the assumption that we are in a thermodynamical equilibrium.
for which the entropy is maximal. This entirely fixes the probabilities p; from
(60, 61, 62):

M

Py %exp{—/)’Ei}, D= Zexp{—,BE;} =1/

i=1

COMMENTS:

e [t is remarkable that the only input left from the “big” system is the
temperature 7.

e There is no right or wrong using the micro-canonical or the canoni-
cal description. Both are different experimental settings: the micro-
canonical description referes to an isolated system as a function of the
conserved quantities e.g. energy; the canonical descriptions describes a
“small” system embedded in a “large” system (heatbath) with energy
exchange.

After these revisions, we are now ready to embark yet to another perspective.
While the description of a fixed particle number in each of the boxes is quite
natural for the spin system, but less so for the ideal gas:

\' ° ." If we do not think of he boxes as

e v ’ \..\ bounded by real walls, we need

o to allow that our “small” system

looses and gains particles from the

o F ,JV surrounding. We say that our

o o @ & 1 “small” system is embedded in a

" o 4 \ ¢ particle reservoir. In addition to

the energy exchange between the

& ,.‘ i r ./, ]zgjsz;z;ze now also allow particle
/ ? _® 5 :

® o
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6.2 The grand-canonical partition function

Luckily, we have now all the mathematics in place to describe the new sce-
nario. We still consider M micro-states in each box, w...wys, but each
definition of a microstate now includes the number N; of particles in the box
for state w;. We still work with occupation numbers n; and corresponding
probabilities p; of finding a state w; in a box. We now have a new constraint:
namely, that the total number of particles in all boxes is fixed, call it N N,
Remember, N is the number of boxes and, hence, N,, could be interpreted as
a reference for the particle number per box. We have now the constraint:

N N
> niN; = NN, = > pi Ny = N,.
i=1

i=1

If we recall the calculation of the entropy in subsection 4.1, it does not refer
to the defintion of the microstate w; at all. Hence, the equations (60, 61, 62)
are unchanged. We just have a further constraining equation:

M
S(B) = =N pilup, = X (63)
i=1
M M ‘ : /
Zpi = 1, ZpiEi = E/N, (64) C%—-é;:(
s -
N
Zp.i [VL' — Np. (65)
i=1

The next step is to recall that we are in a thermodynamical equilibrium,
which maximises the entropy:
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We finally obtain:
Di Z@GXP{@Ei +/3@Vi} b (66)

With tlefirst equation in (64), we fix the first Lagrange multiplier:

N A COeonicak.
7/9(_ - 1 =) e gl:exp{—ﬂEﬂrﬂNNi}- %ML(%%C\ fZav J/c“vt«

funk

The other constraint equations become: Vi
M B
(neFr -  LEen{BE+suN) = 37, )
i=1
M
P > N; exp{—BEi+BuN;y = N;Z,. (69)
2/ rx be ~> o { }

These are two equations for the unknown Lagrange multipliers g and p,
which determines those in terms of the only parameter in the system: E and

N,
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The following calculatjon should be familiar from a analogous one in subsec- —
tion 4.1. Inserting (66) into the entropy equation (63) yields: ——— E/
¢ ( 4 ( '\/ (E)=
< EC TK ¥

é"*”@ﬂv¢4ﬁ5=~h’2@§ =50
%2@ — /QEEC‘\"{L//NC]

= Wbl RV CEDS = Nopp WD = U lp < AFE
S(E,N,) = B(E,N,)E — N[Bu|(E,N,)N, + NInZ,. — @ /U U N,
\JO

We defined the temperature in (11), which we recall here:

(VD =Wl

1 DS(E, N,)

T S T

Ny

After a short calculation:

we find that for the Lagrange multiplier g the same expression as before (see

(22)):
1

T(E,N,)
We still have to find a meaning for the last remaining Lagrange multiplier p.
We calculate:
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