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5.3 Pressure and the equation of state

It is remarkable that we needed quantum physics to properly define the
partition function: the classical description of a gas with IV particles specified
by position and velocity, all real numbers, leads to a state space that is not
countable. Quantum physics have provided a countable state space and, as a
side-effect, introduced the volume V as a parameter in the partition function.

Definition: A parameter (other than temperature) in the canonical partition
function, which might enter via the definition of the energy or the state space,
is called control parameter.

5.3.1 Definition of pressure

As the name suggests, we can usually change the control parameter in an
experimental setup. For example, we might change the volume V' of a gas
container is several ways:
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The response of the thermodynamical system to a change in the control
parameter then defines new thermodynamical quantities.
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Key definition: Consider a thermodynamical system enclosed in a volume
V' and exposed to a heat-bath with temperature 7.

(a) A change of the volume V without changing the entropy of the system is
called adiabatic.

(b) The change of the internal energy under an adiabatic change of the volume
is called pressure: ¢
~ e i
. f‘ (52
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COMMENT:

If the entropy of the container stays constant, it means that an energy ex-
change with the heat bath has not taken place. One way to realise is that the
compression is very fast, so that there is no time for a heat exchange with

the surrounding.
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We already worked out (E) and the entropy S for the ideal gas (see (48)
and (51)). Since all N particles are enclosed in the volume V at all times,
N does not change during an adiabatic change of volume. Constant entropy

then implies =
V T3? = constant , (adiabatic) . (53)

5.3.2 The equation of states

WORKED EXAMPLE - the Ideal Gas

This equation already has some interesting experimental consequences: if we
rapidly decrease the volume from Vg to V; < Vg, the temperature in the
container increases from Tj to:

73/2 e 1/2
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Using (53), i.e.,
T =V,
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for the internal energy (48), we find:

(E)s%NT Lk, T=c-V
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HISTORICAL REMARK: Elements of the Ideal Gas Law were discovered
long before a stochastic description of gases were available. Accordingly,
these laws were named after their discoverer:

Boyle’s law (1662): constant temperature, change pressure

FO@‘ Ve =
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Law of Charles and Gay-Lussac (1787): constant pressure, change tem-
perature

JZ@
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Dalton’s law of partial pressures (1801): The pressure of a mixture of
gases is equal to the sum of the pressures of all of the constituent gases alone
(see exercises).
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5.5 Thermodynamical cycles and engines
5.5.1 Pressure and force

We already used the everyday life intuition and increased the pressure in a
container by exerting a force on its movable piston (see subsection 5.3.1).
We here formalise this connection.

Law in Physics: An object, described by its position Z in space, is displaced
by a vector di’ at the presence of a force F'(&). Then, the change in energy
of the object is given by: dE = F - dZ.

ILLUSTRATION:
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EXAMPLE - PARTICLE IN THE GRAVITATIONAL FIELD

Let us apply this to a gas container with a force F' applied to the piston. The
force changes the postion of the piston by dx. The piston as a cross-section
A. Thus, the volume changes by dV = Adx.

K_oa‘reo(‘?m - /] T
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Since we move the piston against the force F' > 0 from the pressure in the
container, our energy changes by the amount dE (which would be smaller
than zero in the present setting):

g —8Bdry, note: =00

Due to energy conservation, the internal energy FE; of the gas changes as well,
and, by the sake of energy conservation, we have:

S e YLOZ&KM)//’
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If dz is infinitesimal small, no heat exchange takes place, and the 'move’ is
dbne at constant entropy. Our definition of the presssure (52) then yields:

dE; 1 dFE; 1 dE 1 ¥z =

dv ?Acl;u T AT A d  EE

J

Interpretation: The pressure in a container of gas is also given by the force
per unit area of container wall.

5.5.2 Thermodynamical cycles

From the above, we also can relate the change in internal energy F; to the
change of volume without any exchange of heat:

I
db;'= =dEy= s=Pds = —pdidz = Spdv (constant entropy).
— = (57)
Let us generalise this a bit: Let us keep volume V' and particle number N
constant, while changing the temperature. How does the internal energy E;
and the entropy S change?

We have worked out explicit expression for both for the case of the ideal case
(see (48) and (51)). T is now the only variable:
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Combining both equations, we find:

If we change the temperature (while volume and particle number are con-
stant), we adding or removing ’heat’ from the internal system. The ’heat’
dQ is defined as positive if it increases the internal energy.

Assuming that the particle number N does not change in the container, the
entropy is a function of the temperature 7" of the heat bath and the volume
V. We can make T the subject of this equation: 7' = T'(S,V). Inserting
this into the expression of the internal energy, it also becomes a function of
S and V: E;[V,T] —E;(S,V). Using the multi-variate Taylor expansion to
first order, we find: N

oF;
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We write the last equation in terms of the the differentials dF; = FE;(T,V)—
Ei(To, %), dsS =5-— So, dV =V — %I

Ei(S,V) = E;(So, Vo) +

V(S —S) +

gis. —@haiss— pdV (58)

where we have used (57). Note that this equation is exact as long as the
differentials are infinitesimal small.
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Key equations for thermodynamical cycles:

C1 The equation of state: pV = NT

C2 The internal energy: B; = 3/2NT

C3 The equation of constant entropy:

V32 = constant

C4 The change of internal energy: dE; ‘ L'.dSs

P/f\ 0(6‘—\( ‘/KZ‘Q 9.13
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We can now expose the gas container to a variety of external changes: we
can heat it at constant volume, we can heat it at constant pressure, we can
compress is rapidly or slowly or a combination of all that.
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To keep track of such changes, it is convenient to visualise these changes in
a p-V-diagramme. Each point in this diagramme has a unique pair (p,V).
With the help of the equation of state C1, pV = N T, we can also associate
a temperature ot each point, and, because C2, also an internal energy. Each
point thus describes uniquely the state of the gas in the container.

84



A change of the state of the gas by a change in external parameters hence
can be describes as a line in the p-V-diagramme.

WORKED EXAMPLES

Visualise an isothermal (constant T) expansion and calculate the change in
pressure.

P /> (ot p-V= T (foue
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Visualise an adiabatic (constant S) compression and calculate the changes in
pressure and temperature.

aotcolocbic - \/ 7_1/:2@450/‘

—
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After a sequence of these changes, we could find oulselves back at the startzng
point in the p-V-diagramme. We call the whole process a thermodynamic
cycle, since we could repeat the process over an over again. As we will see
below, thermodynamical cycle can take heat from a hot reservoirs to a cold
reservoir and convert part of it into work. This is e.g. used in car engines,
refrigerators or heat pumps.

5.5.3 The Carnot cycle

The proto-type of a thermodynamic cycle was proposed by the French physi-
cist Sadi Carnot in 1824, and is nowadays know as the Carnot process. Our
case container has access to two different heat reservoirs, one ’hot’ reservoir
with temperature Ty and one ’cold’ with T%,.
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