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5.4 The Gibbs paradox and the mixing entropy

Mathematics is based upon axioms, and theorems, which are proven starting
from the axioms. Over the years, the knowledge of Mathematics grows.
Assume that one day, a mathematician arrives at an inconsistencies during
proof (i.e., by using only what has been rigorously established), e.g. “2=3".
The only® conclusion left is that the axioms do not hold up and have to be
changed. Luckily, this has not happened since more than 5000 years.

Something similar (and perhaps more likely to occur) can happen in Physics:
assume that we have developed a theory (such as thermodynamics) that
should describe one aspect of nature. This theory can be an approximation
valid only for a certain parameter range. An example is classical mechanics,
which is an excellent theory for phenomenons at everyday life scales. This
theory is superseded by Quantum Mechanics, which is also valid at particle
length scales. Now and then it can happen that such a theory develops a
contradiction within in its own framework. This is called a paradoz. If a
mistake in the derivation of the paradox cannot be found, it would lead to
the demise of the theory. Such a paradox was indeed found by Gibbs® in the
context of thermodynamics.

Consider a box of N distinguishable particles in a box. Other than being
distinguishable, the particles have the same physical properties. Think o

identical billard balls, each with a diffrent number on it. The box is in
thermodynamical equilibrium and has two compartments separated by a wall:

8This might be an assumption: mathematician also study what can be described by
mathematics asking whether there can be something outside Mathematics and necessarily
remains there.

9Josiah Willard Gibbs (February 11, 1839 — April 28, 1903) - E an American scientist
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State (A): Let us call this state A. What is it entropy? We did such a
calculation in subsection 5.2: since the particles are now distinguishable, the
factor 1/N! is missing from the partition function Z (
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sr) = -4 N <—> 2 gN, (55)

with X in (50). We now can write down the entropy S, of state (A). It is
the sum of entropies for each compartment with volume V/2 and particle
number N/2:
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State (B): We arrive at state (B) by removing the separating wall.

:w@«%y*éw

T

Now, all N particles are distributed in volume V, and the entropy Sp of state
(B) is given by the expression (55):

< 3

The entropy has increased as expected:

SIS eSS = NalnY .

State (C): We arrive at state (C) by reinserting the separating wall. During
the process, we take care that N/2 particles are in each compartment when
the process finished. Since both compartments as well as the whole volume
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in state (B) was at the same temperature 7" throughout, nothing has changed
and we are back at state (A). Hence:

Sas=-S4:
This, however, is a serious problem for our framework:
=
R 5, >5

In words: our system evolved from state (B) to state (C), but apparently the
entropy has decreased. This violates the second law of thermodynamics (see
subsection 3.2), namely that the entropy always increases or stays constant.
This seems to be a inconsistency of our approach and is called Gibbs paradox,
put forward by Gibbs in 1874-75.

Luckily, something is wrong in the line of arguments in section “State (C)”
above. After state (B), wo do NOT arrive back at state (A). Remember that
the particles are distinguishable: starting at state (A), we can number them.
A natural choice (but any other would do as well) is to number the particles
from 1 to N/2 in the left compartment and from N/2 to N in the right one.
Once we are in state (C), we indeed have N/2 particles in each compartment
at the same temperature, but the numbering is (most likely) all mixed up.

State (C) is not State (A).
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In fact, by redistributing numbers to N/2 particle on the left and right hand
side produces many possible outcomes form state (C), and hence explains

the increase in entropy. » 1
Sheling: (f = -

However, we could still be in trodble: what happens if the particles are
indistinguishable? In this cases/We would indeed have that state (C) is the
same as state (A). Let us chéck the entropies. We can use formula (51) for
the case of an ideal gas with indistinguishable particles:

2@
N V/2 1 R
+ B=In o - &= +§3

V1 8
= T e
—Aln[e? 3:l+2N.
For state (B), we have N particles in the volume V/, and thus: h((/( (()(}7

a1 3
Sp =@V e -N.
B n [e N /\3] == 5
We already said that for indistinguishable particles state (C) and state (A)
are identical implying S¢ = S4. The crucial observation is that all these
entropies are the same:

Bty — Sc -

This is what Gibbs had in mind: the wall is fictitious. Removing or reinsert-
ing it does not change anything.

Also note again that pure information can have a measurable physical ef-
fect. Mixing distinguishable particles, which otherwise have identical physi-
cal properties, lead to an increase in entropy. This increase is called mizing
entropy.
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5.5 Thermodynamical cycles and engines
5.5.1 Pressure and force

We already used the everyday life intuition and increased the pressure in a
container by exerting a force on its movable piston (see subsection 5.3.1).
We here formalise this connection.

Law in Physics: An object, described by its position Z in space, is displaced

by a vector dZ at the presence of a force ﬁ(.L) Then, the change in energy
of the object is given by: dE = F . d7.

ILLUSTRATION:
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