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4.3 Spins in a magnetic fields revisited

Here, we work through a particular example in great detail. However, we
will also make a very important observation: whether degrees of freedom
are distinguishable or identical can make a huge difference for the thermal
behaviour of the system. This feature is brought to you by quantum physics.

4.3.1 Spins in a solid:

Let us consider N spins in a magnetic field H in a row. The spins are
distinguishable by their position in the solid*. An ensemble (or event in
probability theory) is a set of N elements each of which is either +1 or —1:

1= (Liaeery 4

fLAE1040 L fioc L b

S

We have labelled the spins in a physical way, namely by their postion in the
solid. The spins do not interact with each other. The energy of a particular
ensemble is given by:

j=

E({S1}) =l S; .

=1

Each state is one-to-one named by the spin values.

Distinguishable: Thus, the sum over all states is given by the sum over
all spin configurations.

4Properties of individual spins could be measured by a targeted experiment.
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The partition func% (24) is thus given by:

/\ / Nolef jon

Zige = 30 3 ea{-pE({s)) ) =

S e — | {si}
N
— Z exp{—ﬁH Zsi }
{si} =1
= Z exp{—F H s1}...exp{—8B H sx}. (31)

{si}
We are now using

@ Tx-() (B8)

i=1 k=1

which also implies ' S T
N N N
Z aibkcl = <Z ai> <Z bk> <Z Cl> y etc.
i,k,l =ik k=1 o

Let us spent some time to enjoy a bit of mankind’s 5000 year legacy - the
distributive rule:
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We now can re-write (31):

Zaist. = Z exp{—B Hs1}...exp{—S Hsn} =
{si}

_ <ZﬂH> <Zﬂﬂ> |

If rename the spin variable in each of the sums to, say, s, we find:

N
Zdist. = (Z e_ﬁH'“) = (e_BH +efH )N. (32)
== O BU
The Helmholtz Free Energy F' in (27), for our case here 2 M A"(C e )
F(T) = -T N In (& + &) @ (/) (33)

<
is our starting point to calculate the internal energy (F) and entropy S:

=" Z(F)= ”?Nm e e

—

f(‘{/'"
DTZA)QHT*M e o .
S T =~ W4 badi(l/7)

\

(cy=—2

Hence, we have obtained:
(E)(T) = —N Htanh (5 H) , (34)
D) = —NH,Btanh(,BH) + N In(ePH +e°7) . (35)
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The figure below shows both in natural units as a function of 7/H (dimen-

sionless):
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Let us study what happens at low temperatures as defined by

§[4:ﬁH>1 = <<1.

T

/»cg = (- 9—)

Expanding in powers of exp{—SH} we find: K /2(,044 S ol pw fiid Z@r ( T {Y)

: : - &
(ES =— M = Ay = -V T
— 23 &
= — tpppmfy) — 2 - <.

With MAPLE, we can get the next order in a convenient way:

I e O(e"ﬁﬁH) . (36)

NH
This has an interesting interpretation: 5

e In leading order, the energy is E = —NH. This energy is as low as it

can get. We say all spins are in the so-called ground state. In our case,
all spins are pointing down.

e The next states with slightly higher energy are those where all spins
except one are pointing down. The energy difference to the ground
state is:

B e ) ol [—NH] R

SATTENTION: physicist chargon.

o7
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The probability that this so-called excited state is populated at small
temperature is exponentially small, namely: exp{—AF/T}. This is
generically the case for systems with a gap between ground state and
excited states.

For the entropy, we find for low temperatures:

% = [1 + 2BH] e 2PH 4 (9(6_45H) . (37)

COMMENT:

The entropy vanishes exponentially fast for low temperature (up to power-law
corrections). This might be due to the discrete nature of our energy states.
It is, however, generic that S vanishes for T' approaching zero. Systems are
in their ground state. It is generic in quantum mechanics that there is only
one ground state. In information theory, the sytem lost its capacity to store
information at 7' = 0. The stetting with 7" = 0 is aes called absolute zero.
(/T &

Let us also study the high temperature limit: SH < 1. In this case, we can
expand the exponentials in (34,35) into a Taylor series of powers of SH. We
find:

(E) 1 1 1

NeE — " ajE sy T O <ﬁ> (38)
S 1 1
v ~EF- g + O<T4) (39)
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