[RECAP] Experiment measurements: events -> Mathic Lime evolution

Lime evolution

Cui. Output space Eyent space Probability P2 Pi dim=M Statispen semble: D'Particular system: thermodyn equil. -> Pi=1/m Vi \$\ \(\text{Conserved quant.} \)

Il S(conserved quant.)great: $S = \sum_{i=1}^{m} P_i h_i P_i$ therm: $S(E_i N) = h_i M_i$

Lectures 11 Feb, 13-15:00

4 The canonical ensemble and Boltzmann's distribution

4.1 The heat-bath

Explicit calculations with the microcanonical ensemble are generically difficult. A practical way out is to consider the statistical system in that we are interested immersed into a heat-bath of temperature T, say the surrounding. We view our system as small with a number of degrees of freedom much smaller than that of the surrounding system. If we add our system to the heat-bath, its contribution to the total internal energy is small. When everything has equilibrated, our system will have to a good extent the same temperature T as the heat bath initially.

Conserved a
Conserved a
E, N

T(E)

Marco Canonical

Conserved A

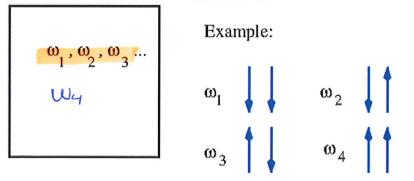
Characteria

Characteria

Conserved A

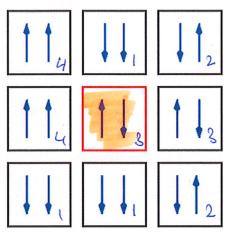
Characteria

The "small" system has states $\omega_1, \omega_2, \ldots \omega_M$, which have energies $E_i, i = 1, 2, \ldots$ For example, consider a system consisting of only two spins (see adjacent graph). In this case, our small system has only M = 4 states.



The heat-bath is made of the same material, in the above example "spins". In order to get a technical grip on the heat-bath, we consider $N-1\gg 1$

replicas of our "small" system. All these systems are allowed to exchange energy and after a while are in thermodynamical equilibrium.



To describe the whole system, we adopt a new way to describe it: we introduce n_i as the number of times that we find ω_i in one of the N boxes.

For the above example, we find:

M:
$$\omega_1$$
: $\omega_1 = 3$ $\omega_2 = d1$ $h_2 = 2$
 $1d = \omega_3$ $h_3 = 2$ $\omega_n = 11$ $\omega_n = 2$

Aboves with state ω_2

 $\frac{M=4}{2}h_{i}=V$

Definition: The n_i s are called occupation numbers.

Observation: If we pick a box at random, the probability to find a state ω_i in this box is given by $p_i = n_i/N$.

 $n_k = 5$ means that 5 boxes out of the N boxes contain state ω_k . Thus, if we sum up all the occupation numbers, we recover that total number N of boxes:

$$\sum_{i=1}^{M} n_i = N . (13)$$

What is the internal energy of the system?

We have n_k states ω_k in system each is contributing the energy E_k to the total internal energy E. Hence, we find:

$$\sum_{k=1}^{M} n_k E_k = E. {14}$$

It turns out that E is entirely specified by the occupation numbers, which make them convenient parameters to describe the whole system.

The next step is to find the temperature T for a given total energy E. Since the system is in thermodynamical equilibrium, we just need to find the total number of states M_{all} (Note that M is already reserved for the numer of states in one box). Assume that we have a given set of occupation numbers n_i . If for example $n_1 = 3$, we know that we have state 1 three times in the system but we do not have specified where to find those three states. In fact, we have

$$\left(\begin{array}{c} N \\ n_1 \end{array}\right) \; = \; \frac{N!}{n_1! \; (N-n_1)!}$$

possibilities to find a home for those n_1 states. We now need to distribute n_2 states to the remaining $N - n_1$ slots. For this we have

$$\begin{pmatrix} N-n_1 \\ n_2 \end{pmatrix} = \frac{(N-n_1)!}{n_2! (N-n_1-n_2)!}$$

possibilities. We then continue to distribute n_3 states and so on. The total number of states is therefore:

$$M_{all} = \binom{N}{n_1} \binom{N - n_1}{n_2} \dots = \frac{N!}{n_1! \ (N - n_1)!} \frac{(N - n_1)!}{n_2! \ (N - n_1 - n_2)!} \dots$$

$$= \frac{N!}{n_1! \ n_2! \ \dots \ n_M!}.$$

The entropy is therefore given by:

$$S(E) = \ln(N!) - \sum_{i=1}^{M} \ln(n_i!)$$
.

Note that the E dependence enters via the contraint (14). In any macroscopic application the occupation numbers (and N) are fairly large numbers. To give the scale, 22.4litres of gas under normal conditions contains $N_A = 6.022 \times 10^{23}$ molecules, which is just the number of degrees of freedom. N_A is Avogadro's number. The number of potential states is usually much larger than the number of degrees of freedom. We therefore going to use the famous Stirling approximation for the factorials (see tutorial):

$$\ln(n!) = n \ln n - n + \mathcal{O}(\ln n).$$

We can neglect the $\ln n$ trem when it is compared to n. For example, $\ln N_A \approx 54.7$ compared to the order 10^{23} . We find:

$$S(E) = \ln V! - \frac{1}{2} \ln(h_i!)$$

$$= N \ln N - N + O(\Omega N) - \frac{1}{2} (h_i \ln h_i - h_i) = \frac{1}{2} \ln |x| = N$$

$$= N \ln N - \frac{1}{2} \ln h_i \ln h_i + O(\ln N)$$

We finally find:

$$S(E) = N \ln N - \sum_{i=1}^{M} n_i \ln n_i + \mathcal{O}(\ln N).$$

We can further simplify if we switch to occupation probabilities $p_i = n_i/N$ as alternative degrees of freedom. We find:

$$\frac{1}{\sum_{i=1}^{M} h_i h_{i}} = N \cdot \frac{1}{\sum_{i=1}^{M} h_i h_{i}} \frac{h_i h_{i}}{N} h_{i} \frac{h_i h_{i}}{N} + h_i h_{i}}$$

$$= N \cdot \frac{1}{\sum_{i=1}^{M} h_i h_{i}} \frac{h_i h_{i}}{N} + h_i h_{i}}{N}$$

$$= N \cdot \frac{1}{\sum_{i=1}^{M} h_i h_{i}} \frac{h_i h_{i}}{N} + N \cdot h_i N$$

$$|S(E) = -N \cdot \sum_{i=1}^{M} p_i h(p_i)|$$

Altogether with the constraints (13) and (14), we find:

$$S(E) = -N \sum_{i=1}^{M} p_i \ln p_i , \qquad (15)$$

$$\sum_{i=1}^{M} p_i = \frac{1}{N} \sum_{i=1}^{M} n_i = 1,$$
 (16)

$$\sum_{i=1}^{M} p_i E_i = \frac{1}{N} \sum_{i=1}^{M} n_i E_i = E N.$$
 (17)

Remember that we are in thermodynamical equilibrium. The Second Law of Thermodynamics then suggest that the entropy is maximal. This is powerful then we now can calculate the occupation probabilities p_i ! To this aim, we need to maximise S(E) in (15), but we need to take into account the constraints (16,17). The way to do is is with the method of Lagrange:

S(E)-smax
$$Z_{Pi}=1$$
 $Z_{Pi}E_{c}=E/N$
 $S(E)$ -smax $S(E)=-N_{e}P_{i}P_{i}h_{Pi}+\lambda(Z_{Pi}-1)$
 $\Rightarrow AB(N\cdot Z_{Pi}E_{i}-E)$
 $OP_{i}=-N_{h}P_{i}-N+\lambda \Rightarrow NB\cdot E_{i}=0$
 $P_{c}=\frac{1}{2}\cdot exp(-BE_{i})$ P_{i} constant

The final solution is

$$p_i = \frac{1}{Z} \exp\{-\beta E_i\} , \qquad (18)$$

where the free parameters Z and β must be chosen to satisfy the constraints. Indeed, (16) implies

$$\frac{m}{2}p_{i}=1$$

$$\frac{d}{d} = \frac{1}{2}e^{-BEi}$$

$$\frac{d}{d} = \frac{1}{2}e^{-BEi}$$

and thus:

$$Z(\beta) = \sum_{i=1}^{M} \exp\{-\beta E_i\}.$$
 (19)

Definition: $Z(\beta)$ (19) is called partition function. It is a primary quantity in statistical and solid physics, from which many thermodynamical observables can be derived.

The constraint (17) then determines the other parameter $\beta(E)$:

$$\frac{1}{Z(\beta)} \sum_{i=1}^{M} E_i \exp\{-\beta E_i\} = \langle E \rangle (\beta) = E/N.$$
 (20)

We can now insert (18) into (15) and derive the entropy as a function of E:

$$S(E) = -N \cdot t p_i \ln p_i = -N \cdot \frac{\pi}{2} \frac{1}{2} e^{-RE_i} \left[-RE_i - \ln 2 \right]$$

$$= NB \left[\frac{\pi}{2} \frac{\pi}{2} E_i e^{-RE_i} + N \cdot \ln 2 \right]$$

$$= B \cdot E + N \cdot \ln 2$$

$$= 1 (19)$$

And thus, we find:

$$S(E) = \beta(E) E + N \ln Z(\beta(E)). \tag{21}$$

Rather than dealing with the total energy E, which is an extensive quantity and as such would depend on the size of the heat-bath, it is much more intuitive to swap E for the intensive parameter T, i.e., temperature. As before, the connection is made via the relation:

$$\frac{1}{T(E)} \neq \frac{\partial S(E)}{\partial E}$$

We can now insert (21) into the last equation and carry out a remarkable calculation:

$$S(E) = B(E) \cdot E + B(E) \cdot 1 + N \cdot \frac{\partial}{\partial E} \ln Z(A(E))$$

$$\frac{1}{2} \frac{\partial Z}{\partial B} = \frac{1}{2} \frac{\partial}{\partial B} \frac{\nabla}{\partial E} = \frac{1}{2} \frac{\nabla}{\partial E} = \frac{1}{2} \frac{\nabla}{\partial E} = -\langle E \rangle$$

$$S(E) = B(E) \cdot E + B + N \cdot (-LE) \cdot B(E) = B(E) = \frac{1}{2} \frac{\partial}{\partial E} =$$

In summary, we observe:

$$\frac{1}{T(E)} = \beta(E) . \tag{22}$$

Let us scrutinise the mathematical steps to interpret the meaning of the later equation:

- We have calculated the entropy of the whole system as a function of the conserved total energy E. In this process, need to tune $\beta(E)$ to satisfy a constraint.
- We then obtained the temperature T(E) as a function of E. We already said that, for most systems, we can invert this relation providing E = E(T) with, as usual for inverse functions, T(E(T)) = T.

- We then define (with a slight recycling of the notation): $\beta(T) := \beta(E(T))$.
- Equation (22) then tells us:

$$\beta(T) = \frac{1}{T}.$$

This is a remarkable result: be switching from the overall conserved energy E to the temperature T, we have severed the connection to the heat-bath: everything can now be calculated as a function T using the states of one "small" system:

$$p_i = \frac{1}{Z(\beta)} \exp\{-\beta E_i\}, \qquad (23)$$

$$Z(\beta) = \sum_{i=1}^{M} \exp\{-\beta E_i\}, \qquad \beta = 1/T.$$
 (24)

DERIVED OBSERVABLES

We are now working with a fixed temperature T, dictated by the heat bath, at the expense that the energy is not conserved since we can exchange energy with the surrounding heat-bath. Hence, the average internal energy is a quantity of interest:

$$\langle E \rangle (T) = \frac{1}{Z(\beta)} \sum_{i=1}^{M} E_i \exp\{-\beta E_i\} = -\frac{d}{d\beta} \ln Z(\beta) . \qquad (25)$$

We easily show the later equality by noting:

$$\frac{d}{ds} \ln 2 = \frac{d}{ds} \ln 2 = \frac{d}{ds} \ln 2 = \frac{1}{2} \frac{d}{ds} \ln 2 = \frac{1}{2} \frac{d}{ds} \ln 2 = \frac{1}{2} \ln 2 = \frac{1}{2}$$

We can also consider the entropy fo our "small" system (rather than that of everything - system and heat-bath:

$$S(T) = -\sum_{i=1}^{M} p_i \ln p_i = -\frac{M}{2} \frac{1}{2} e^{-\beta E_i} \left[-\beta E_i - h_i Z \right]$$

$$= \beta \frac{1}{2} \sum_{i=1}^{M} E_i e^{-\beta E_i} + h_i Z$$

$$= \beta (E) + h_i Z$$

Altogether, we find:

$$S(T) = \beta \langle E \rangle(T) + \ln Z(\beta). \qquad (26)$$

Another important quantity is the heat capacity c_v^3 .

Key definition: The heat capacity is defined by

$$c_v = \frac{d}{dT} \langle E \rangle$$
.

Key observation: The heat capacity is always positive (and is only zero in exceptional cases):

$$c_v = \frac{1}{T^2} \left\langle \left(E^{k} - \langle E \rangle \right)^2 \right\rangle \geq 0.$$

(Fluctuation-Dissipation theorem).

The later observation is an example of a so-called Fluctuation-Dissipation theorem. The derivation is part of the the homework problems. It is an important result since it reconciles our mathematical approach with everyday life experience: we would expect that, if we raise the temperature, the internal energy $\langle E \rangle$ increases (everything else would very counter intuitive!). Indeed, the theorem is telling us just this: the slope $d\langle E \rangle/dT$ is (generically) positive.

 $^{^{3}}$ The subscript V later will mean that we keep the volume constant, but we will have to wait until we have introduced V properly below.

4.2 Helmholtz Free Energy

As we have seen, the partition function (24) plays a major role if our system is embedded in a large system at a given temperature. A quantity with the dimensions of energy related to the partition function is the following:

Key definition: if Z(T) is the partition function of a canonical ensemble, the Helmholtz Free Energy is defined by:

$$F(T) = -T \ln Z(T). \tag{27}$$

KEY PROPERTIES:

We can express the average energy (25) of our ensemble in terms of the temperature T and Free Energy F(T):

$$(E)(T) = -\frac{d}{dt} \ln Z$$

$$\frac{d}{dt} \ln Z = \int \frac{d}{dt} \int_{i=1}^{\infty} e^{-\frac{E_i}{2}t} \int_{i=1}^{\infty} \frac{E_i}{2} \int_{i=1}$$

Likewise, we find from (26) a connection to the entropy:

$$S(T) = \beta \cdot (ET + hnZ)$$

$$\frac{\partial f}{\partial T} = -\frac{\partial}{\partial T} \left[T hnZ \right] = -hnZ - T \frac{\partial}{\partial T} hnZ$$

$$= -hnZ - T \frac{\langle E \rangle}{T^2} = -S(T)$$

In summary, we have made

$$|S(T) = -\frac{\partial F}{\partial T}|$$

Key observations: If F(T) is the Helmholtz Free Energy, we find:

$$\langle E \rangle (T) = -T^2 \frac{d}{dT} \left(\frac{F(T)}{T} \right) , \qquad (28)$$

$$S(T) = -\frac{d}{dT} F(T) . \qquad (29)$$

$$\langle E \rangle (T) = T S(T) + F(T) . \qquad (30)$$

$$S(T) = -\frac{d}{dT}F(T). (29)$$

$$\langle E \rangle (T) = T S(T) + F(T).$$
 (30)