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4 The canonical ensemble and Boltzmann’s
distribution

4.1 The heat-bath

Explicit calculations with the microcanonical ensemble are generically diffi-
cult. A practical way out is to consider the statistical system in that we are
interested immersed into a heat-bath of temperature T, say the surrounding.
We view our system as small with a number of degrees of freedom much
smaller than that of the surrounding system. If we add our system to the
heat-bath, its contribution to the total internal energy is small. When ev-
erything has equilibrated, our system will have to a good extent the same

temperature 7' as the heat-bath initially. C’O(m Ot s f @ I
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The “small” system has states wq, wa, ... wy, which have energies E;, i = ‘/[?X e

1,2,.... For example, consider a system consisting of only two spins (see
adjacent graph). In this case, our small system has only M = 4 states.

Example:

v | all e |
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The heat-bath is made of the same material, in the above example “spins”.
In order to get a technical grip on the heat-bath, we consider N —1 > 1
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replicas of our “small” system. All these systems are allowed to exchange
energy and after a while are in thermodynamical equilibrium.
To describe the whole system, we
Tw

adopt a new way to describe it:
[, e
T 1,

we introduce n; as the number of
ERIRENINAR

times that we find w; in one of the
For the above example, we find:

N boxes.
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Definition: The n;s are called occupation numbers.
Observation: If we pick a box at random, the probability to find a state
w; in this box is given by p;= n;/N.

n, = 5 means that 5 boxes out of the N boxes contain state wy. Thus, if
we sum up all the occupation numbers, we recover that total number N of
boxes:

M
e (13)
=1
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What is the internal energy of the system?

We have n;, states wy in system each is contributing the energy Ej to the
total internal energy E. Hence, we find:

M

S = R (14)

=1

It turns out that E is entirely specified by the occupation numbers, which
make them convenient parameters to describe the whole system.

The next step is to find the temperature 7" for a given total energy E. Since
the system is in thermodynamical equilibrium, we just need to find the total
number of states M,; (Note that M is already reserved for the numer of
states in one box). Assume that we have a given set of occupation numbers
n;. If for example n; = 3, we know that we have state 1 three times in the
system but we do not have specified where to find those three states. In fact,

we have
N _ N!
s o 7?,1! (N = nl)!

possibilities to find a home for those n; states. We now need to distribute
ny states to the remaining N — ny slots. For this we have

N—n;\ (N —nq)!
L) TLQ! (]V — Ny — ng)'
possibilities. We then continue to distribute ns states and so on. The total
number of states is therefore:

PR . N-—ny B N (M=)
— ni N9 0T gl (N~ mg! (N —neZng)!
N
nilng! .ol

The entropy is therefore given by:

S(E)r= In(N!y — Zln(ni!).
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Note that the E dependence enters via the contraint (14). In any macro-
scopic application the occupation numbers (and N) are fairly large num-
bers. To give the scale, 22.4litres of gas under normal conditions contains
N, = 6.022 x 10?2 molecules, which is just the number of degrees of freedom.
N4 is Avogadro’s number . The number of potential states is usually much
larger than the number of degrees of freedom. We therefore going to use the
famous Stirling approximation for the factorials (see tutorial):

In(n!) = nlnn — n + O(lnn) .

We can neglect the Inn trem when it is compared to n. For example, In N4 ~
54.7 compared to the order 10?3, We find:
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We finally find:

M
S(E) = NInN — Zni Inn; + O(InN) .

i=1

We can further simplify if we switch to occupation probabilities p; = n;/N
as alternative degrees of frecdom We find:

Zm bn. = N- ‘2 < (5 )
A (/n(il/}re/mﬂ/)
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Altogether with the constraints (13) and (14), we find:

M
S(E) = —N Zpi Inp; , (15)
M M
ZP:’ = NZW i (16)
=1 =1
M 1 &
ZPi B, = - Zni B, )=(EJN . (17)
=1 =1

Remember that we are in thermodynamical equilibrium. The Second Law of
Thermodynamics then suggest that the entropy is maximal. This is powerful
then we now can calculate the occupation probabilities p;! To this aim,
we need to maximise S(F) in (15), but we need to take into account the
constraints (16,17). The way to do is is with the method of Lagrange:

CEIomax  Tp<d T g = Epy
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The final solution is

1
Disee= 7z exp{—BE,-}, (18)

where the free parameters Z and f must be chosen to satisfy the constraints.
Indeed, (16) implies
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and thus:
M

Z(B) = ) exp{—BE;}. (19)

i=1

Definition: Z(p) (19) is called partition function. It is a primary quan-
tity in statistical and solid physics, from which many thermodynamical oh-
servables can be derived.

The constraint (17) then determines the other parameter B(E):

M

6 pEeR=BEY = (M® = BN o0

I

We can now insert (18) into (15) and derive the entropy as a function of E:
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And thus, we find:
BRI B an<ﬁ(E)> . (21)

Rather than dealing with the total energy F, which is an extensive quantity
and as such would depend on the size of the heat-bath, it is much more
intuitive to swap F for the intensive parameter 7', i.e., temperature. As
before, the connection is made via the relation:

1\ 195(E)
T(E) oE "

We can now insert (21) inte-th€ last equation and carry out a remarkable
calculation:
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= = BE). (22)

Let us scrutinise the mathematical steps to interpret the meaning of the later
equation:

e We have calculated the entropy of the whole system as a function of
the conserved total energy £. In this process, need to tune 3(E) to
satisfy a constraint.

e We then obtained the temperature T'(E) as a function of E. We already
said that, for most systems, we can invert this relation providing F =
E(T) with, as usual for inverse functions, T'(E(T)) = T.

48

{1

1=

=)

@)

7



e We then define (with a slight recycling of the notation): B(T) :=
BE(T))-

e Equation (22) then tells us:

This is a remarkable result: be switching from the overall conserved energy
E to the temperature T, we have severed the connection to the heat-bath:
everything can now be calculated as a function 7' using the states of one
“small” system:

po= g e(-AE}, (23)
M
4B) = > ep{-pE},  f=1T. (24)

DERIVED OBSERVABLES

We are now working with a fixed temperature 7', dictated by the heat bath, at
the expense that the energy is not conserved since we can exchange energy
with the surrounding heat-bath. Hence, the average internal energy is a
quantity of interest:

M
(EXT) = 575 Y B op{~pB} = = :hs(f). (29

e ae
e

We easily show the later equality by noting:
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We can also consider the entropy fo our “small” system (rather than that of
everything - system and heat-bath:

-C

S@) = ~Shwhp = _ D T o ;‘i(
- [’ﬂ - A

o —3E,

= A &) *7-41; ,'//

Altogether, we find:
S(T) = BE)T) + WmZ(B) . (26)

Another important quantity is the heat capacity c,®.

Key definition: The heat capacity is defined by

d
Cpy = ﬁ<E>

Key observation: The heat capacity is always positive (and is only zero
in exceptional cases):

o= (@~ @)’y > 0.

(Fluctuation-Dissipation theorem).

The later observation is an example of a so-called Fluctuation-Dissipation
theorem. The derivation is part of the the homework problems. It is an
important result since it reconciles our mathematical approach with everyday
life experience: we would expect that, if we raise the temperature, the internal
energy () increases (everything else would very counter intuitive!). Indeed,
the theorem is telling us just this: the slope d(E)/dT is (generically) positive.

3The subscript V' later will mean that we keep the volume constant, but we will have
to wait until we have introduced V properly below.
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4.2 Helmholtz Free Energy

As we have seen, the partition function (24) plays a major role if our system
is embedded in a large system at a given temperature. A quantity with the
dimensions of energy related to the partition function is the following:

Key definition: if Z(T') is the partition function of a canonical ensemble,
the Helmholtz Free Encrgy is defined by:
FTy = @nz(T)’ (27)

KEY PROPERTIES:

We can express the average energy (25) of our ensemble in terms of the
temperature 7" and Free Energy F(T):
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Likewise, we find from (26) a connection to the entropy:
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In summary, we have made (/ /a_t/_:
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