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3.4 Heat exchange

We still need to demonstrate that our defintion of temperature is in line with
everyday life experience. For example, if we bring together two containers
with temperatures T4 and Ty and T4 > Tp, we would expect that energy
flows from the hotter vessel into the colder vessel.

Mathematically this is a three

stage process illustrated in the ad- insulating wall

jacent figure:

1. We prepare two systems E A TA EB TB
in thermodynamical equilib-
rium with F4 > Egp. The
wall between the containers
in insulating.

2. We replace the insulating
wall by a wall that allows en-
ergy exchange between the
container. We wait until the energy gxchange
combined systems reaches
the thermodynamical equi-
librium.

insulating wall

3. We re-insert the insulat-
ing wall and now have two , . : :
containers with energy FE E ATA E B TB
and F5. The temperatures
might change to 77 and T7.

We will consider the case where E, is not so much different from Fjy so that
we can expect

AE, AEpR

Eyp = Eas + AE4)B, B, < 1, =
) B

Gl

let us briefly focus on system A: it evolves from the thermodynamical system
at stage 1 into the the thermodynamical system at stage 3. We know that
the number of states (and hence the entropy) only depends on the energy.
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We assume that we can expand the entropy in a Taylor series:?

‘H\?rh«(;ﬂ( -802 :

(Weter) Ocf. of

‘éé‘c\,\ fe‘fAPC,

The combined system at stage 3 is made of two isolated systems and therefore
the combined entropy is the sum of the entropies of the individual systems
(see subsection 3.2):

e = SA(EA) S SB(EE)
From the Second Law of Thermodynamics (see subsection 3.2), we know
SC = SA(EA) e SB(EIB) = SA(EA) Bz SB(EB).

Using the aboxyé{ﬂt from the Ta& expansion, we observe:

7 //-E \
Gtz S %+454> ke Uegl)

=7 A€y« Ay <O
m)4?4 >J;

We a1e now using energy conservation (or the First Law of Thermodynamics),
and observe:

2This is true for most systems such as ideal gases. Near so-called 1st order phase
transition, we need to revise this assumption later.
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Combining both results, we arrive at the important finding:

1 i
— — — | AE :
<TA TB> 4 >0

Without any loss of generality, we assumed that 74 is bigger than Tz, and,
thus, the bracket in the above equation is negative. To satisfy the Second
Law of Thermodynamics (i.e., the above inequality), we can conclude that
(and since AE4 + AEp = 0):

AL, <0,'—7 AFEp >0.

The important observation is that energy is flowing from the hot sytem into
the cold system.

SUMMARY:

o Entropy is a mathematical tool and e.g. also used in information theory
(where it is called Shannon Entropy).

e We defined a statistical system as the output space of a random process,
where the events are generated by the law of physics during time evolu-
tion. Since the underlying physical processes obey energy conservation,
the measurement of energy of an event is the same for all elements of
the statistical ensemble (First Law of Thermodynamics).

e The statistical system is said to be in thermodynamical equilibrium
when all the events (also called states) have equal probability.
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