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3 Microcanonical ensemble and temperature

3.1 Entropy

Consider a system of degrees of freedom coming out of a random process and
call this state wy.

Examples:

(A) 8 arrows, say spins, with orientation either up or down
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B) A container with N moving H, molecules W :
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The system evolves under the laws of physics into a new state w, We also in-
troduce a measurement E(w) € R, which does not change under the evolution
of the system. In particular, we have

E(w) = E(ws)-

E is called a conserved quantity. An important example is the (internal)
Energy of a closed system.

Definition: The fact that the total energy does not change during time
evolution when the system adopt different elements of the output space is
called the First law of Thermodynamics.
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Examples:

(A) If a spin is parallel to an external magnetic field, it contributes the energy
H to the internal Energy. If a spin is anti-parallel, its contribution is —H.
If ny is the numbers of spins parallel and n. = N — n. the number of
anti-parallel spins, the internal energy is given by B = H(ny —n_).

LCmpf2 beloye: E-=H- (rf)’g); - 2
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(B) If the ith molecule has velocity v; and if all molecules have the same mass
m, the internal energy is given by the sum of their so-called kinetic energies:

N

=i
We treat the evolution from w; to wy as a random process.

Comment: This is a stark assumption since e.g. the laws of Newtonian me-
chanics would allow us to calculate the postions and the velocities of all the
molecules from its initial values by solving an ODE. Note that the Newtonian
laws are just an approximation, which works extremely well for macroscopic
bodies, and the true underlying theory is Quantum Mechanics who adds an
intrinsic random process to the time evolution. In case we do not invoke this
theory, we could even turn Newtonian time evolution into a random process
by just saying that we do not have any information on the positions of the
molecules.

Example: This is best explained using hard-sphere collisions:
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Time evolution is then a radom process that sequentially generates a sequence
of states
W0 o — W =0 W%

Core definition: The set of all events Q = {wy, wa, ...} is called thermo-
dynamical ensemble. Each ensemble is characterised by the set of conserved
quantities such as energy F or particle number N.

We then can assign probabilities to p; to each state w;, which characterise
the physical system. A good deal of history and experimental evidence then
went to finding those probabilities that reproduce observations. A derived
quantity which will help to analise physical systems is the Entropy.

Definition: If M is the number of states of €2, the derived quantity

M
B 0 D

=1

is called Entropy, where p; is the probablity for state i to occur. It is a
function of the conserved quantities, e.g., of the internal energy E: S = S(E).

In order to come up with a sensible defintion for the p;, let us consider a par-
ticular example, which will then lead us to a proper mathematical defintion.

Example:

Let us assume we consider hard-sphere scattering and start with an improb-
able setting with small p;. ‘Only the right half of a container is filled with
moving hard spheres, which scatter.

27



s
.Qwﬁgf : @@E

It is probable that some of the spheres will be scatter to the left half of
the container over time. It is also likely that we reach a sort of steady
state after many collisions, which is “macroscopically” only characterised
by the conserved quantities. We call this steady state the thermodynamaical
equilibrium. If we zoom into a fraction of the volume into states, we could
exchange those volumes and would still arrive at a state that is plausible.

Example:

This leads us to the mathematical defintion:

Core definition: A physical system with state space 2 and set of probabil-
ities {p;, ¢ = 1... M} is in thermodynamical equilibrium, if all probabilities
are cqual

pi = 1/M.

We draw a first conclusion: If a physical system (Q, {p;.i = 1...M}) is in
thermodynamical equilibrium, the entropy is given by

M
S = - E In <i> = n M (10)



Example:
A chain of N spins (without constraints, i.e., H = 0) has the entropy in
thermodynamical equilibrium:
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3.2 l;roperties of Entropy
w0
Let us t0 isolated statistical system visualised as boxes below. We could

think of our 1-dimension spin chain in an external field. Each of the systems
us characterised by the internal Energy [ 5 and the number N/, of degrees
of freedom, here spins. The state of the system is the box on the left side
is described by probabilities p;, i = 1...M(E;) where M(E;) is the total
number of states. The probabilities g, k = 1...M(E,) characterise the
state of the system in the right box. Both systems are not necessarily in the
thermodynamical equilibrium, where the set of states in either box would
have the same probability.

tHited| [Hiteat

By definition, both entropies are

M(Eq) M(Ez)
S = — Z pi Inp; , Sy = — Z qr In gy .
i=1 k=1
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We do now do not change the physics of the systems at, but shift our point
of view and consider the two boxes as one statistical system:

E;N;

thetdd

E; N,

13811

What is the Entropy of the in-thoughts combined system?

Now, we need to enumerate all possible states the combined system can
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Hence, there are M (Ey)M(FE,) states in total. Since both systems are “iso-

lated”, or in mathematical terms,

“statistically independent”, the probability

that system 1 is in state i and system 2 is in state k is given by p;q,. We
then find for the Entropy of the combined system:
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Hence, we observe that the Entropy of two individual isolated systems adds
up, i.e., S = 51+ Sy, if both systems are considered as one statistical system.
Of course, we can add now a third box with another statistical system and
would find that its entropy adds to S; + S and so on.

Key observation The Entropies of statistically independent (isolated) sys-
tems add up to form the Entropy of the combined system.

Definition: A measurement, which is additive for isolated subsystems, is
called  extensive.

Other examples for eztensive measurements are the internal energy F and
the number of degree of freedoms, N, since

E = Ei+E;, N=N;+ N, .

Let us now change the physical situation:

1. We will now assume that the system in either box is in thermodynam-
ical equilibrium with all p; = p are the same as well as g, = ¢. The
corresponding entropies are hence given by

S] = hl]\/[(El), SQ = 111]\1(E2)
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2. Note that we naturally assume that p # ¢. Nevertheless, the combined
system is also in thermodynamical equilibrium, since every state has
the same probability p;q, = pg.

3.- Thermal contact: The crucial change is now that we allow the two
systems to exchange energy. Of course, the total encrgy B = F; + F,
is conserved, but now the energy content of each box can change.

o —mn | i Y

E,N, E, N,

thitid|ditiit

Before we allow thermal contact, we found that the total entropy is S(E) =
S(Ey) + S(Es), E = E; + E;. We now allow a thermal contact and let the
total system reach thermal equilibrium.

What is the entropy S(£) of the thermalised system now?

Since the “big” system is in thermal equilibrium, we need to find the total
number of states M (FE) since

S(E) = mM(E) .

We consider the total energy E and the energy of system e; as variables: the
energy in box 2 is then given by ey = E — ey! If it happens that system 1
has energy e;, the total number of states for this configuration is

M(ey) M(E — e;).

However, due to energy exchange, any value 0 < ¢; < E is also permissible.
Hence, the ‘t:otal number of states is now:

M(B) = > M(ey) M(E — &))g= 1M (E,) M(E — Ey) = M(Ey) M(E,)". ( E% 5
il ol

T use small letters since E; and E, are reserved for the energies in the initial state
before we allowed thermal contact.

32



Th inequality is true since all terms are positive and since e; = F; is one of
them. We therefore derive the important result.

8O [ () - 4 ezm(e,)u((g.a)]

Y h (ues) ce- &;))
_ Al + A MEs)

_ AHAE) « AME)
- SE,) S\((:’:L)

Key observation If two systems

i entropy S(E; + !

equilibrium satisfies:

At least for the discrete systems, for which we can count states, the entropy is
bounded from above. Hence, a thermalisation process increases the entropy
until it is limited by the upper bound and reaches a maximum.

Key observation:

Let us check that this observation is consistent with our earlier defintion of
equilibrium, namely a state for which all states of the system have the same
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probability p. We are led to the task:

S = Zpi Inp; — max, Zpizl-

To solve this problem, we use a Lagrange multiplier: /
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We mdeed find that the entropy is maxnnal for p; = 1/M, which was our
definition of thermodynamical equilibrium before!

new Veriable

3.3 Temperature

As discussed in the previous subsections, in thermodynamical equilibrium (see
above for the precise definition!), the entropy only depends on the conserved
macroscopic parameters such as the number N of degrees of freedom or the
internal energy F. In fact, we have

O(F) = mhM(E),

where M is the total number of states of a given physical system. In ev-
eryday life, we are used to temperature rather than E to characterise a
thermodynamical system. Here, I give a precise mathematical definition of
temperature, and we will then check that this defintion meets with our ex-
pectations.
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Core defintion: If a system is in thermodynamical equilibrium (and only
then!) specified by the entropy S(E) as a function of the internal energy E,
the temperature T' is defined by the derivative

| QS[

for a fixed number N of degrees of freedom.

Worked example: Consider a chain of N spins - with orientation up or

down - in an external magnetic field H. If ny is the number of spins with

orientation up and n_ the number of down-spins, the energy of the system

is given by Def of “mersermaf
i ="Hh, =h)" (12) ;((Co)(

The system of spins is exposed to a “heat bath” and undergoes random

fluctuations in the spin orientation while the energy F is conserved. The

system is in thermodynamical equilibrium.

‘ Sketch the spin configuration with minimal energy E,.;, and find F,;,.
DN S QA /z q ¢ fl’\
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Find the entropy S and the temperature 1" of the system as a function of
E for the case N >f. |

For the entropy, we need to find the total number of states for a given energy
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. Note that n completely specifies £, and we only need to find the number
of states for a given n:

iy, — (fj) . m= (EJH+N)/2.

~
We deﬁnend note that v 4+ NN is even because of (12). Thus, we
find:

_ W (E) = # Lo KIS ]
S(F) = mnM(E) = In ( (v + N)/2 ) , N))/
For large N and with the help of torial result, we find: )[ X
. < [Eix /

1
S(E) ~ In <\/ﬁ exp{—ﬁ}> = ¥ [1112 - e ln<27rN>.
We can now calculate the temperature: f\\ f\é ﬂ.\m
iy _ @87 SoE LW
T(E) 9EIn H2N'\\ =

Observations:
e The lowest temperature is reached for £ = E;,:
Tmin Gia H ’

and is not zero. This is specific to the spin system, and e.g. classical
gases encapsulated in a box can reach zero temperature.

o If we raise the temperature from F,;, to E < 0, we find

lig - PEErE="c0:

E—0-
This is an ensemble where we have as many up as down spins.

e Can we have negative temperatures? Mathematically “Yes”, namely
for E > 0. Note, however, that those systems do not naturally occur
in nature: we would need to transfer energy in to the spin system by
e.g. a Laser and then isolate the spins.
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