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Weeks 1-7:

We will have three hours of lecture and one tutorial. There will
be question sheets for the tutorials. You will work through part
of these questions in your time before the tutorial (non-assessed).
Key elements will be the discussed in the tutorial.

Week 8-9:

will host two hours of lecture and two hours Computer Lab. In
the Computer Lab sessions, we will study a statistical phenomena
(see page 108) with a computer experiment using MATLAB. A
basic introduction to MATLAB will be provided, but familiarising
yourself with MATLAB (if needed) could be beneficial. Support
material to get started with MATLAB is provided at the VITAL
page for math327.

Week 11-12:

will three hours of lecture and one tutorial, both will include exam
revision sessions.




Assessment:

12%

Two assessed homeworks due in week 3 and week 6 with equal
weighting. A clear and neat presentation of all this contributes to
your mark.

8% | for a computer based project due in week 11.
80% | Standard Examination.
Resources:

This portfolio covers the lecture material, the questions and tasks for the
tutorial and the computer based project.

The VITAL page for the module math327 has more support material. You
might find the small podcasts e.g. on getting started with the software useful.

A list for further readings can be found at the end of these notes.
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1 What is Statistical Physics?

The physical sciences try to unlock the laws of nature and to understand the
everyday-life or experimental observations. “Understand” frequently means
to find the mathematical description that reproduces a cluster of physics
observations and that allows to make predictions for other observables.

Physics over the last century has been a tremendous success story: in exper-
iments, we can now create a vacuum that is better than in outer-space, and
the coldest place in the universe is in our solid state physics labs. Amazingly,
the Mathematics to describe those realms of physics has been developed, in
some cases, centuries before. Physicist now embark to find the Mathematics
of the theory of everything, which will combine the description of the sub
atomar with that of the grande scales - gravity.

The brand of “Statistical Physics” summarises those observations and laws
of nature the successful mathematical description of which is Probability The-
ory. The quality of the mathematical description is usually outstanding to
an extent that 'randomness’ from the probabilistic description is hardly ob-
served in the observables. In fact, Ludwig Eduard Boltzmann (1844-1906),
the founder of statistical mechanics, had a hard time to defend his theories.
His mental health deteriorated over the years, and he committed suicide on
September 5, 1906, while on vacation with his wife and daughter in Duino,
near Trieste.

While at Boltzmann’s times, phenomena such as temperature, pressure and
diffusion were the objective, probability theory now is at the heart of modern
physics. For instance, when in neutron stars gravity becomes soo large that it
crushes atoms by forcing electrons to combine with protons to form neutrons,
it is probability theory that explains while the neutron matter does not col-
lapse under the immense gravity. We will later understand the mathematics
behind this (see quantum gases).

2 Central Limit Theorem

The high quality of probability theory descriptions can be traced to the
involvement of some very large numbers. If we for instance go back to the
stochastic description of properties of (classical) gases, 22.71 litres of gas
under mormal conditions’ (a pressure of 100.00kPa and a temperature of



0° Celsius) contain 6.02214086 x 10?* gas particles (Avogadro’s constant).
If pressure arise from air particles colliding with the walls and pushing the
‘out’, why is the pressure not wildly fluctuating, but can be perfectly and
reproducible measured? The mathematical answer lies in the Law-of-Large-
Numbers and the Central-Limit-Theorem.

2.1 Probability Essentials

Experiment E and state w: Fach time an ’experiment’ is performed, the
world comes out in some state w. The definition of the experiment includes
the objects of interest.

Set of all states Q: The set of all possible outcomes w is denoted 2 and
is called the universe of possible states. Note that it is obviously intricately
tied to the experiment E.

Measurement X (w): If we are interested in measuring some features of our
states w, we need to map each individual state w to a one number X, in which
we are interested. Hence, we can view X a function of w and call it X (w). In
Mathematics, X (w) is called random wvariable. After having performed the
experiment E once, it is the result of the measurement of X on the state w
that E produced.

Set of outcomes A: If we input all possible states w € {2 to the function
X (w) and collate the outcome in a set, we generate the set A of a possible
outcomes. Mathematically, we can write:

X: Q= A.

The set A can be finite, infinite and countable, or infinite and continuous.

Set of events I': An event is any subset of the set of all outcomes A. Ac-
cording to our interest, we can group these subsets together to form the set
of events F.

Examples:
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In many cases, we want to characterise the states w and introduce a unique
number as a qualifier for the states. This means that we introduce a ran-
dom variable L(w) as a ’label’. Since the label is unique, this function is
1somorphic:

w ¢ L(w)

and we can synonymously use the set of outcomes A for ). We need to be
careful since not all textbooks make the distinction between A and €2, which
can be a source of confusion.

Probability P: Every event has a probability P of occurring. Mathemati-
cally, we define the probability measure function P as

P: F—]0,1].
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The probability measure function must satisfy two requirements:

e The probability of a countable union of mutually exclusive events must
be equal to the countable sum of the probabilities of each of these
events.

e The probability of the outcome set A must be equal to 1. This simply
means that the experiment E must produce an outcome. This makes
sense than we would simply say that the experiment did not take place
if no output was produced.

The triple (A4, F, P) is called probability space.

Examples:
(A) Assume that an experiment can only produce N possible states as out-
comes. In this case, the state space is given by

W= {wl,wg, ...OJN} .
Assume that we have a random variable X (w) with the property
if X(wi)7éX(wk), :>wi7éwk.

We do not exclude, that X (w;) = X (wy) for some pair 4,k 7 # k. We then
define the set A of outcomes by all X (w;) that are different. The size of the
set isn < N:

A = {Xl---Xn} .

We could now choose as events the random variables X; itself. The event

space hence is given by
.F == {Xl---Xn} .

We then can assign probabilities to each of these events:
P(X;) = p;, 1= Laanlhs

Since these events are all mutually exclusive by construction, we find e.g. for
Al
P(XL or Xk) = P(X,) + P(Xk)

P(XjorXpor ...or X,) = » P(X;) =1.
=1



Let us now consider some a specific examples:

Throwing a die:
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Addendum page 10: Roulette — European Tables

The standard European table has 18
black, 18 red and one green pocket
(numbered 0) making 37 pockets in
all.
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n=10

Gauss, n=10




Toss a fair coin four times :
7 Tt )
(

€ psssib ¢ p=_ = p, = T

I:{@w/éﬁo{[JMT( hol & S

(O

“ s

W@Q = -——G’ @10‘(\ €9

Comments:

e Defining the probabilities is called modelling. Symmetries are a power-
ful way to inform this choice. E.g., for a so-called “fair” die, we expect
that every side of the side shows up top with equal probability. This
demand is actually enough to fix the probabilities p;, 2 =1...6.

e Rather than modelling, we could try to infer the probabilities from
the abundance of certain events. To this end, we could repeat an
experiment n times and the Law-of-Large-Numbers can then help us
to infer the probabilities.

2.2 The Law of Large Numbers

Suppose we carry out an experiment with a finite set of outcomes
A = RSN

We consider each of the possible outcomes as events implying that the event
space F is equal to the set of outcomes, F = A. As discussed before, we can
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assign probabilities

N
pi= P(X;)  withpe[o1], > p=1.
i=1

We will use a slightly more elegant notation and write:
d P@E) =1.
XeA
We then introduce the mean £ and the variance o? in usual way by

po= (X) =) XPX), 1)

XeA
o = (X =p)’) = ) (X —p*PX). 2)
XeA

We now repeat the experiment n-times, and call this a new experiment with
outcome space B. For n = 4, this space looks like:

&(‘?. 4)(!)((%()/(( X(X(X(XZ( XQ}(QX(%

-

We call the outcome of the ith repetition X € 4, 1 < i < n. The individual
experiments are carried out independently. If one particular element of the
outcome space B is given by

w =gEaeeRac e

m
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the probability of this element is given by:
Pw) = P (Xf”) P (X,E”) j2 <X,(3)) P(X®) .

Let us now return to the general case of n independent repetition of the same
experiment.The @rithmetic mean

e 8
e

is itself a random variable (it e.g. depends on the outcome of the first exper-

iment Xi(l) € A), but we would expect that this has something to do with
the mean p. To reveal this connection, we calculate

13
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X® is a sequence of random numbers with exitsting mean and standard
deviation:

(X9) =, (X9 —w)?) = 0%,
we then find:
1 o
nh_l)];.o = ZX Wi (Law of Large Numbers) .
i=1

2.3 Central Limit Theorem

A quick word in case we are dealing with a continuous random variable X . We
specialise to the important case that X is a real number. Such as distribution
has a probability density function p(2), and therefore its probability of falling
into a given interval, say [a, b], is given by the integral

b
P(aﬁXSb) = / p(z) dx .
We are now prepared to look at the Central Limits Theorem (CLT):

Let X1, X, ..., X be asequence of N independent and identically distributed
random variables. The probability distribution function p(x) can be arbi-
trary, but we assume that mean and variance exist:

(af) = / slpl@)de =112}, p=(z);, ¢ = (") - (=)".

Define a new random variable S by

N
=l

For sufficiently large N, the probability distribution of S'is given by a normal

distribution: " ( = )2
s—Np
SUEE eXp{ 2No? } |

There are many versions of the CLT. This version is the one we are using
throughout this lecture. Proofs can be found in many textbooks. Here, we
focus on a first application: (normal) diffusion.
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2.4 Diffusion on a line

Assume that we walk on a line with a given step length. At each step, we
independently decide whether we step to the right (probability p) or to the
left (probability ¢ =1 — p). Also assume that we perform N steps. We will
vary N later. If each step does take time At, the time ¢ after N steps is
simply given by

= (3)

If L/R denotes a as step to the left / right, a typical event looks like:

LRRLLLRERR ) K/ M=)
/ e &

L PPIIAL- -~

The probability that ezactly this event occurs is given by:

ZNI/)OCQL;(((&B')(‘ V: ﬁlV*k\, (ﬁ:(—}ﬂ/

e sley Aﬁeve%‘é h=(

The interesting question is: where are we after time ¢ (or N steps)? Since
stepping is a radom process, we need to refine this question: Where are we
most likely or more precise, if we do this experiment many times, what is
the average position (z)? We then would want to know: how precisely do we
know this average or what is the variance (2) — (2)2?

If k is the total number of steps to the right, we have N — k steps to the left,
and our position would be:

¢ =k— (N—k) = 2% — N.

The order with which we step to the left or right does not the postion z with
which we }kend up. For example, take N = 5 and let us write down all events
for which end up at 2 = 3:
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