Top Quark Physics at the Large Hadron Collider David Schaich (Amherst College) Šarka Todorova (Tufts University) Krzysztof Sliwa (Tufts University) #### UM-CERN NSF-REU Program Five College Symposium University of Massachusetts 1 October 2005 #### **CERN** The European Organization for Nuclear Research - The world's largest particle physics laboratory and research center, located outside Geneva Switzerland on the Swiss-French border - Founded in 1954 as a multinational collaboration - Now includes 20 European Member States - USA, Russia, EU, UNESCO, Japan, Turkey and Israel have observer status - •Flagship project: the LHC ## Large Hadron Collider (LHC) - 14-TeV proton-proton accelerator - Currently under construction: - First beams, 2007 - First physics runs 2008 - A hadronic 'discovery' accelerator - Will search for Higgs, supersymmetry, quark-gluon plasmas, CP-violation, physics beyond standard model - Also important for top quark physics - A "Top Factory" ## Top Quarks - Detected only ten years ago - Very heavy hard to produce - Much still measured with only little precision - Mass - Spin - Polarization - Decays - Bare quarks? ## Top Quarks Beyond the SM •Can also be used to probe physics beyond the Standard Model •Top mass constrains Higgs mass (light Higgs favored by top mass data) ### Top Quark Production Dominant production mechanism is top-antitop pair production through either Quark-antiquark annihilation 5% Tevatron: LHC: Gluon-gluon fusion 15% 95% ## Top Quark Decay and Detection - Tops decay very quickly into a b quark and W boson. The W can then decay either leptonically or hadronically. - This gives three channels of top-antitop decay: Dilepton channel: $t\bar{t}$ μ or e only: 5% Lepton + jets channel: $t\bar{t}$ μ or e only: 30% All-jets channel: $t\bar{t}$ 44%, messy $$t\bar{t} \to l^+ \nu_l b \ l^- \bar{\nu}_l \bar{b}$$ $$t\bar{t} \to b l^+ \nu_l \ \bar{b} q \bar{q}$$ $$t \bar t o b \bar q q \ b q \bar q$$ • Which is best for measurements? Leptons easy to measure Jets less so Neutrinos not at all #### Top Mass in the Dilepton Channel - Have very accurate lepton measurements, but nothing at all for the neutrinos. - Task is to determine eight unknowns (four-momentum components of the two neutrinos) from eight kinematical equations. - Use a geometrical approach for each quark Constant E_t gives a circle in momentum space Varying E_t produces a paraboloid Points of constant M_t lie on a plane section of the paraboloid - i.e., an ellipse Project the ellipse onto the transverse momentum plane - Ellipses for top and antitop should match! - See Dalitz, R.H.& Goldstein, G.R. 1992 Phys. Rev. **D45**, 1531-1543 #### The Project - My project was to take code from the CDF experiment at Fermilab that measures the mass of the top quark using the dilepton channel approach just described and adapt it to the ATLAS experiment. - Then I would test the code with samples of increasingly complex and realistic data, in preparation for real data from ATLAS. - The work is still in progress after many complications, most rather technical and uninteresting. ## An Interesting Complication ## Acknowledgments - CERN - University of Michigan Prof. Homer Neal Prof. Jean Krish - National Science Foundation - Ford Motor Company - Tufts University Dr. Šarka Todorova Prof. Krzysztof Sliwa NSE