Exploring lattice supersymmetry with variational quantum deflation

David Schaich (U. Liverpool)

Lattice 2023, August 3

arXiv:2112.07651 arXiv:2301.02230 and more to come with Chris Culver

Overview and plan

Spontaneous susy breaking in Wess–Zumino model is compelling target for near-term quantum computing

Lattice supersymmetry motivations

Sign problems and spontaneous susy breaking

Wess-Zumino model and variational quantum deflation

Lattice supersymmetry motivations

arXiv:2208.03580

Lattice field theory promises first-principles predictions for strongly coupled supersymmetric QFTs

David Schaich (Liverpool)

Wess-Zumino Variational Quantum Deflation

Lattice supersymmetry motivations

arXiv:2208.03580

Lattice field theory promises first-principles predictions for strongly coupled supersymmetric QFTs

QFT

(1+1)d Wess–Zumino model Simplest QFT with spontaneous supersymmetry breaking

Lattice supersymmetry sign problems

Recall phase reweighting in lagrangian formalism

$$\langle \mathcal{O}
angle = rac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \ \mathcal{O}(\Phi) \ e^{-\mathcal{S}[\Phi]} \ \longrightarrow \ rac{\left\langle \mathcal{O} \ e^{i lpha}
ight
angle_{\mathsf{pq}}}{\left\langle e^{i lpha}
ight
angle_{\mathsf{pq}}}$$

Lattice supersymmetry sign problems

Recall phase reweighting in lagrangian formalism

$$\langle \mathcal{O}
angle = rac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]} \longrightarrow rac{\left\langle \mathcal{O} \ e^{i lpha}
ight
angle_{\mathsf{pq}}}{\left\langle e^{i lpha}
ight
angle_{\mathsf{pq}}}$$

Spontaneous supersymmetry breaking

Requires vanishing Witten index $W = \text{Tr}\left[(-1)^{F}e^{-iHt}\right] = \text{Tr}_{B}\left[e^{-iHt}\right] - \text{Tr}_{F}\left[e^{-iHt}\right]$

Periodic BCs $\longrightarrow \mathcal{W} = \mathcal{Z} \propto \left\langle e^{i\alpha} \right\rangle_{pq} = 0 \longrightarrow$ maximally bad sign problem

[Avoided with fermion loop formulation by Steinhauer–Wenger, arXiv:1410.6665; with tensor networks by Kadoh et al., arXiv:1801.04183]

Wess-Zumino Variational Quantum Deflation

Apply quantum computing

Evade sign problems by changing perspective

Path integral \longrightarrow continuous-time hamiltonian H on spatial lattice

Generic targets:

Find ground state $|\Omega
angle \longrightarrow$ test spontaneous symmetry breaking

Real-time evolution
$$|\Psi(t)\rangle = e^{-iHt} |\Psi(0)\rangle \sim \left(\exp\left[-iH\delta_{T}\right]\right)^{N_{T}} |\Psi(0)\rangle$$

(1+1)-dimensional Wess–Zumino model

arXiv:2301.02230

Supersymmetric $H \leftrightarrow$ matched boson / fermion d.o.f. at each lattice site:

$$H = Q^{2} = \sum_{n} \left[\frac{p_{n}^{2}}{2} + \frac{1}{2} \left(\frac{\phi_{n+1} - \phi_{n-1}}{2} \right)^{2} + \frac{1}{2} [W(\phi_{n})]^{2} + W(\phi_{n}) \frac{\phi_{n+1} - \phi_{n-1}}{2} + (-1)^{n} W'(\phi_{n}) \left(\chi_{n}^{\dagger} \chi_{n} - \frac{1}{2} \right) + \frac{1}{2} \left(\chi_{n}^{\dagger} \chi_{n+1} + \chi_{n+1}^{\dagger} \chi_{n} \right) \right]$$

Prepotential $W(\phi)$ ensures supersymmetric interactions

$$W = \phi$$
 [free theory] $\longrightarrow W \neq 0 \longrightarrow$ supersymmetric $|\Omega\rangle$

 $W = \phi^2 \longrightarrow$ expect dynamical supersymmetry breaking

Wess–Zumino set up for quantum computing

Map bosons and fermions to finite number of qubits Fermions: Usual Jordan–Wigner transformation \longrightarrow one qubit per site Bosons: Retain lowest $\Lambda = 2^B$ harmonic oscillator modes binary encoding $\longrightarrow B$ qubits per site

Defines operators like *H* in terms of Pauli strings

Explicit susy breaking from different treatment, removed as $\Lambda \to \infty$

Current focus on exploratory development & testing

 $\longrightarrow \mbox{Qiskit simulator for rapid turnaround}$

[github.com/chrisculver/WessZumino]

Variational quantum eigensolver (VQE)

Well-known 'hybrid' quantum-classical algorithm

Quantum circuit implements wave-function ansatz $|\Psi(\theta_i)\rangle$ with tunable params

Loss function measurements \longrightarrow classical optimizer adjusts θ_i to minimize $\overset{\sim}{\sim}$ shallower circuit \longrightarrow less sensitive to noise / errors

Energy as loss function \longrightarrow approximate ground state

Apply to Wess–Zumino model Spontaneous supersymmetry breaking \leftrightarrow non-zero ground-state energy $E_0 = \langle \Omega | H | \Omega \rangle = |Q| \Omega \rangle|^2$

Some Wess–Zumino VQE technical details

Balance expressivity of ansatz vs. number of parameters

Tested various flavors of Qiskit RealAmplitudes circuits alternating CNOTs and parameterized Y rotations

RY(0[4]

Wess–Zumino VQE

 $W = \phi$ with $N_s = 2$ and $\Lambda = 16 \longrightarrow 10$ qubits, 30 params, ~1000 Pauli strings

Can struggle to find ground state even for free theory

5 VQE runs find $10^{-7} \lesssim E_0 \lesssim 10^{-1}$ [exact $E_1 = E_2 \approx 1.118$]

Challenge:

Distinguishing "small" vs. "zero"

Excited states can help

Get *k* lowest eigenstates from Variational Quantum Deflation (VQD) [Higgott–Wang–Brierley, arXiv:1805.08138]

Do k VQE solves, each time deflating previous eigenstates

$$H_{k} = H + \sum_{i=0}^{k-1} \beta_{i} |\Psi_{i}\rangle \langle \Psi_{i}| \qquad \qquad \beta_{i} > E_{k} - E_{i}$$

Wess–Zumino VQD

 $W = \phi$ with $N_s = 4$ and $\Lambda = 4$ 12 gubits, 36 params, \sim 4000 Paulis 10^{1} ш LL L 100 100 1000 2000 3000 4000 5000 6000 7000 Iteration

 $W = \phi^2$ with $N_s = 3$ and $\Lambda = 8$ 12 qubits, 36 params, ~6000 Paulis

VQD: 0.450, 1.399, 1.405 Exact: -0.001, 0.829, 0.829

VQD: 0.991, 0.993, 1.551 Exact: 0.416, 0.416, 1.089

David Schaich (Liverpool)

Wess-Zumino Variational Quantum Deflation

Recap and outlook

Spontaneous susy breaking in Wess–Zumino model is compelling target for near-term quantum computing

- Sign problem motivates quantum computing
- Variational quantum deflation distinguishes broken or not
- Lots to explore: Optimizations, formulations, real-time evol...

Recap and outlook

Spontaneous susy breaking in Wess–Zumino model is compelling target for near-term quantum computing

Sign problem motivates quantum computing

Variational quantum deflation distinguishes broken or not

Lots to explore: Optimizations, formulations, real-time evol...

Backup: Supersymmetry of Wess–Zumino lattice hamiltonian

Build $H = Q^2$ from lattice supercharge

$$\boldsymbol{Q} = \sum_{n} \left[\boldsymbol{p}_{n} \psi_{n}^{+} - \left(\frac{\phi_{n+1} - \phi_{n-1}}{2} + \boldsymbol{W}(\phi_{n}) \right) \psi_{n}^{-} \right]$$

by changing variables

$$\psi_n^{\pm} = \frac{1 \pm i(-1)^n}{2i^n} \left(\chi_n^{\dagger} \pm i\chi_n \right)$$

Note exact lattice supersymmetry allowed by continuous time

Backup: Wess–Zumino VQD with Dirichlet BCs

 $W = \phi$ with $N_s = 3$ and $\Lambda = 8$ 12 qubits, 36 params, ~4250 Paulis

David Schaich (Liverpool)

Wess-Zumino Variational Quantum Deflation

 $W = \phi^2$ with $N_s = 3$ and $\Lambda = 8$

12 gubits, 36 params, \sim 3000 Paulis

12/12

Backup: Real-time evolution

For now, need far too many gates for reasonable $\Lambda \gtrsim \mathcal{O}(10)$

$$W = g\phi^3 + m\phi$$
 with $\Lambda = 4$, $N_s = 1$
 \longrightarrow supersymmetric quantum mech.
[arXiv:2112.07651]

Smarter Trotterization & transpilation should help

Backup: Supersymmetric quantum mechanics

Reduce to single spatial site:

$$\mathcal{H}_{ ext{SQM}} = rac{1}{2} \left[\hat{p}^2 + [m{W}(\hat{q})]^2 - m{W}'(\hat{q}) \left(\hat{b}^\dagger \hat{b} - \hat{b} \hat{b}^\dagger
ight)
ight].$$

Spontaneous supersymmetry breaking no longer dynamical \longrightarrow determined by prepotential

Harmonic oscillator $W_{HO} = m\hat{q} \longrightarrow$ expect (free) supersymmetric $|\Omega\rangle$

Anharmonic oscillator $W_{
m AHO}=m\hat{q}+g\hat{q}^3 \longrightarrow$ expect supersymmetric $|\Omega
angle$

Double-well $\mathit{W}_{\mathsf{DW}} = m \hat{q} + g \left(\hat{q}^2 + \mu^2
ight) \, \longrightarrow \,$ expect spont. susy breaking

B	Backup: Supersymmetric quantum mechanics						arXiv:2112.07	651
C	around-	state er						
F	Free theory clearly converges to zero energy							
More params \longrightarrow harder to converge, especially for anharmonic oscillator W_{AHO}								АНО
Clear non-zero energy (spont. susy breaking) for double-well W_{DW}								
	Λ	HO	VQE	AHO	VQE	DW	VQE	
	2	0	5.34e-10	9.38e-01	9.38e-01	1.08e+00	1.08e+00	
	4	0	1.07e-09	1.27e-01	1.27e-01	9.15e-01	9.15e-01	
	8	0	4.06e-09	2.93e-02	2.93e-02	8.93e-01	8.93e-01	

0

0

1.13e-08

4.81e-08

16

32

6.02e-02

6.63e-01

1.83e-03

1.83e-05

8.94e-01

8.95e-01

8.92e-01

8.92e-01

Backup: Supersymmetric quantum mechanics

arXiv:2112.07651

Count number of entangling gates for single Trotter step (default Qiskit transpilation)

Big improvements when $\Lambda = 2^{B}$ (note log scale)

12/12

Backup: Supersymmetric quantum mechanics VQD

