Lattice studies of three-dimensional super-Yang-Mills

David Schaich (University of Liverpool)

Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography

International Centre for Theoretical Sciences, Bangalore, 29 August 2022

arXiv:2010.00026 arXiv:2201.08626 arXiv:2208.03580 and more to come with R. G. Jha, A. Joseph, A. Sherletov & T. Wiseman

Overview and plan

Three dimensions is a promising frontier for practical lattice studies of supersymmetric QFTs

Twisted lattice super-Yang–Mills (SYM) brief review

Recent work: Q = 16 SYM and dual D2-branes

Ongoing work: Q = 16 SYM phase diagram

Q = 8 SYM & 2d quiver super-QCD

Interaction encouraged — complete coverage unnecessary

Motivations

Lattice field theory promises first-principles predictions for strongly coupled supersymmetric QFTs

David Schaich (Liverpool)

3d lattice SYM

Motivations

Lattice field theory promises first-principles predictions for strongly coupled supersymmetric QFTs

Three dimensions Rich field theory and holographic dynamics

David Schaich (Liverpool)

3d lattice SYM

More manageable computational costs

Results to be shown, and work in progress use importance sampling to evaluate up to \sim crore-dimensional integrals (Dirac operator as $\sim 10^7 \times 10^7$ matrix)

Significant computational resources required Many thanks to USQCD–DOE, DiRAC–STFC–UKRI, and computing centres!

k j		

USQCD @Fermilab

Barkla @Liverpool

Supersymmetry must be broken on the lattice

Supersymmetry is a space-time symmetry, $(I = 1, \cdots, \mathcal{N})$ adding spinor generators Q_{α}^{I} and $\overline{Q}_{\alpha}^{I}$ to translations, rotations, boosts

 $\left\{ Q^{\mathrm{I}}_{\alpha}, \overline{Q}^{\mathrm{J}}_{\dot{\alpha}} \right\} = 2\delta^{\mathrm{IJ}}\sigma^{\mu}_{\alpha\dot{\alpha}}P_{\mu}$ broken in discrete space-time

 \rightarrow relevant susy-violating operators

Supersymmetry need not be *completely* broken on the lattice

 $\begin{array}{l} \mbox{Preserve susy sub-algebra in discrete lattice space-time} \\ \implies \mbox{correct continuum limit with little or no fine tuning} \end{array}$

Equivalent constructions from 'topological' twisting and dim'l deconstruction

Review: Catterall–Kaplan–Ünsal, arXiv:0903.4881

Need $Q = 2^d$ supersymmetries in *d* dimensions

 $d = 3 \longrightarrow$ super-Yang–Mills (SYM) with Q = 8 or (maximal) Q = 16

David Schaich (Liverpool)

3d lattice SYM

3d maximal SYM in a nutshell

May be easiest to grok as dimensional reduction of 4d $\mathcal{N} = 4$ SYM

All fields massless and in adjoint rep. of SU(N) gauge group

4d: Gauge field A_{μ} plus 6 scalars Φ^{IJ}

 $\mathcal{N} = 4$ four-component fermions $\Psi^{I} \leftrightarrow 16$ supersymmetries Q^{I}_{α} and $\overline{Q}^{I}_{\dot{\alpha}}$ Global SU(4) ~ SO(6) R symmetry

3d: Gauge field A_{μ} plus 7 scalars Φ $\mathcal{N} = 8$ two-component fermions $\Psi \iff 16$ supersymmetries Global Spin(7, \mathbb{C}) ~ SO(8) \supset SO(4) ~ SU(2) × SU(2) R symmetry

Symmetries relate kinetic, Yukawa and Φ^4 terms \longrightarrow single coupling $\lambda = g^2 N$

Twisting 3d maximal SYM

May be easiest to grok as dim'l reduction of 4d twisted $\mathcal{N}=4$ SYM [2002.10517]

$$\{ \mathcal{Q}, \mathcal{Q}_{a}, \mathcal{Q}_{ab} \} \longrightarrow \{ \mathcal{Q}, \mathcal{Q}_{0}, \mathcal{Q}_{\mu}, \mathcal{Q}_{0\mu}, \mathcal{Q}_{\mu\nu} \}$$

$$\{ \eta, \psi_{a}, \chi_{ab} \} \longrightarrow \{ \eta, \eta_{0}, \psi_{\mu}, \psi_{0\mu}, \chi_{\mu\nu} \}$$

$$\{ \mathcal{U}_{a}, \overline{\mathcal{U}}_{a} \} \longrightarrow \{ \phi, \overline{\phi}, \mathcal{U}_{\mu}, \overline{\mathcal{U}}_{\mu} \}$$
with $\mu, \nu = 1, \cdots, 4$

Twisted rotation group now

$$\mathrm{SO(3)}_{\mathrm{tw}} \equiv \mathrm{diag} igg[\mathrm{SO(3)}_{\mathrm{euc}} \otimes \mathrm{SO(3)}_R igg] \hspace{1cm} \mathrm{SO(3)}_R \subset \mathrm{SO(4)}_R$$

Two closed supersymmetry sub-algebras in discrete space-time

$$\{\mathcal{Q},\mathcal{Q}\}=2\mathcal{Q}^2=0$$

$$\{\mathcal{Q}_0,\mathcal{Q}_0\}=2\mathcal{Q}_0^2=0$$

Four links in three dimensions $\longrightarrow A_3^*$ lattice

 A_3^* (body-centered cubic) lattice from dimensional reduction of 4d A_4^* lattice

Basis vectors linearly dependent and non-orthogonal

Numerical calculations require regulating zero modes and flat directions and stabilizing dimensional reduction

Deformations to stabilize lattice calculations

Recall soft Q-breaking SU(*N*) scalar potential $\propto \mu^2 \sum_a \text{Tr} \left[\left(\mathcal{U}_a \overline{\mathcal{U}}_a - \mathbb{I}_N \right)^2 \right]$ and supersymmetric U(1) constraint $\sim G \sum_{a < b} (\det \mathcal{P}_{ab} - 1)$

Monitor Q restoration via Ward identity violations $\langle \text{Tr } Q [\eta U_a \overline{U}_a] \rangle \neq 0$

Deformations to stabilize lattice calculations

Enable naive dimensional reduction (4d code with $N_x = 1$)

Potential $\propto \mu^2 \text{Tr} \left[(\varphi - \mathbb{I}_N)^{\dagger} (\varphi - \mathbb{I}_N) \right]$ to break center symmetry in reduced dir \longrightarrow Kaluza–Klein reduction rather than Eguchi–Kawai

Public code for supersymmetric lattice field theories

so that the full improved action becomes

$$S_{\rm imp} = S'_{\rm exact} + S_{\rm closed} + S'_{\rm soft}$$

$$S'_{\rm exact} = \frac{N}{4\lambda_{\rm lat}} \sum_{n} \operatorname{Tr} \left[-\overline{\mathcal{F}}_{ab}(n)\mathcal{F}_{ab}(n) - \chi_{ab}(n)\mathcal{D}_{[a}^{(+)}\psi_{b]}(n) - \eta(n)\overline{\mathcal{D}}_{a}^{(-)}\psi_{a}(n) \right. \\ \left. + \frac{1}{2} \left(\overline{\mathcal{D}}_{a}^{(-)}\mathcal{U}_{a}(n) + G \sum_{a\neq b} \left(\det \mathcal{P}_{ab}(n) - 1 \right) \mathbb{I}_{N} \right)^{2} \right] - S_{\rm det}$$

$$S_{\rm det} = \frac{N}{4\lambda_{\rm lat}}G \sum_{n} \operatorname{Tr} \left[\eta(n) \right] \sum_{a\neq b} \left[\det \mathcal{P}_{ab}(n) \right] \operatorname{Tr} \left[\mathcal{U}_{b}^{-1}(n)\psi_{b}(n) + \mathcal{U}_{a}^{-1}(n+\widehat{\mu}_{b})\psi_{a}(n+\widehat{\mu}_{b}) \right]$$

$$S_{\rm closed} = -\frac{N}{16\lambda_{\rm lat}} \sum_{n} \operatorname{Tr} \left[\epsilon_{abcde} \chi_{de}(n+\widehat{\mu}_{a}+\widehat{\mu}_{b}+\widehat{\mu}_{c})\overline{\mathcal{D}}_{c}^{(-)}\chi_{ab}(n) \right],$$

$$S'_{\rm soft} = \frac{N}{4\lambda_{\rm lat}} \mu^{2} \sum_{n} \sum_{a} \left(\frac{1}{N} \operatorname{Tr} \left[\mathcal{U}_{a}(n)\overline{\mathcal{U}}_{a}(n) \right] - 1 \right)^{2}$$

$$(18)$$

 \gtrsim 100 inter-node data transfers in the fermion operator — non-trivial

Public parallel code github.com/daschaich/susy [arXiv:1410.6971] actively developed for improved performance and new applications

David Schaich (Liverpool)

3d lattice SYM

3d maximal SYM thermodynamics

arXiv:2010.00026

Formulate on $r_1 \times r_2 \times r_\beta$ (skewed) 3-torus

Thermal boundary conditions \longrightarrow dimensionless temperature $t = \frac{T}{\lambda} = \frac{1}{r_{\beta}}$

> Low temperatures t at large N \uparrow Black branes in dual supergravity

Holographic expectations for 3d maximal SYM

Holographic expectations for 3d maximal SYM

Rich holographic phase diagram, especially when $r_1 \neq r_2$

First consider simplest homogeneous black D2-branes $\longrightarrow r_1 = r_2 = r_\beta$

Homogeneous D2 phase

Homogeneous D2-branes \leftrightarrow uniform Wilson line eigenvalue phases at large N

Holographic black brane energies and continuum extrapolation

Lattice volume L^3 with gauge group U(8)

 \longrightarrow results approach leading holographic expectation $\propto t^{10/3}$ for low $t \lesssim 0.4$

Carry out first 3d continuum extrapolations, $L \rightarrow \infty$ with fixed $t = 1/(L\lambda_{lat})$

Aside: No sign problem for 3d maximal SYM

Continuum limit $L \to \infty$ with fixed $t = 1/(L\lambda_{lat}) \implies \lambda_{lat} \to 0$

Pfaffian nearly real positive for $\lambda_{lat} \leq 1$ on small volumes \longrightarrow no sign problem

Next step: Exploring the 3d Q = 16 SYM phase diagram

Work in progress to investigate D2–D0 transition with $r_L = r_1 = r_2$ \longrightarrow scan in r_β fixing aspect ratio $\alpha = r_L/r_\beta$

3d Q = 16 SYM spatial deconfinement transition signals

Preliminary U(8) results for 8³ vs. 12³ vs. 16³ lattices (aspect ratio $\alpha = 1$)

Still locating peaks in Wilson line susceptibility and checking hysteresis

Work in progress: 3d Q = 8 SYM

Simpler [Blau–Thompson] twisted formulation

Q=8 supercharges $\{\mathcal{Q},\mathcal{Q}_a,\mathcal{Q}_{ab},\mathcal{Q}_{abc}\}$ with $a,b=1,\cdots,3$

 \longrightarrow site / link / plaquette / cube fermions $\{\eta, \psi_a, \chi_{ab}, \theta_{abc}\}$ on simple cubic lattice

David Schaich (Liverpool)

3d lattice SYM

Work in progress: 3d Q = 8 SYM

Simpler [Blau–Thompson] twisted formulation

- Q=8 supercharges $\{\mathcal{Q},\mathcal{Q}_{\textit{a}},\mathcal{Q}_{\textit{abc}},\mathcal{Q}_{\textit{abc}}\}$ with $\textit{a},\textit{b}=1,\cdots,3$
- \longrightarrow site / link / plaquette / cube fermions $\{\eta, \psi_a, \chi_{ab}, \theta_{abc}\}$ on simple cubic lattice

Work in progress: Quiver superQCD from twisted SYM

First check 3d SYM \longrightarrow 2d superQCD then new 4d SYM \longrightarrow 3d superQCD

- 2-slice lattice SYM with $U(N) \times U(F)$ gauge group
- Adj. fields on each slice
- Bi-fundamental in between

Decouple U(F) slice

 \rightarrow U(*N*) SQCD in *d* – 1 dims. with *F* fund. hypermultiplets

Three dimensions is a promising frontier

Recap: An exciting time for lattice supersymmetry

for practical lattice studies of supersymmetric QFTs

Preserving susy sub-algebra enables lattice calculations, public code available

3d Q = 16 SYM thermodynamics consistent with holography, work in progress on phase diagram

Work in progress on 3d Q = 8 SYM \longrightarrow 2d superQCD and much more for the future

Thanks for your attention!

Any further questions?

Collaborators

Simon Catterall, Joel Giedt, Raghav Jha,

Anosh Joseph, Angel Sherletov, Toby Wiseman

Funding and computing resources

UK Research and Innovation

Backup: Lattice $\mathcal{N} = 4$ SYM

Lattice theory looks nearly the same despite breaking Q_a and Q_{ab} Covariant derivatives \longrightarrow finite difference operators

Complexified gauge fields $\{A_a, \overline{A}_a\} \longrightarrow$ gauge links $\{U_a, \overline{U}_a\} \in \mathfrak{gl}(N, \mathbb{C})$ with gauge-invariant flat measure $DUD\overline{U}$

Need $U_a \rightarrow \mathbb{I}_N + A_a$ to recover continuum covariant derivative

 $\checkmark \mathcal{Q}$ interchanges bosonic \longleftrightarrow fermionic d.o.f. with $\mathcal{Q}^2 = 0$

$$\begin{array}{ll} \mathcal{Q} \ \mathcal{A}_{a} \longrightarrow \mathcal{Q} \ \mathcal{U}_{a} = \psi_{a} & \mathcal{Q} \ \psi_{a} = 0 \\ & \mathcal{Q} \ \chi_{ab} = -\overline{\mathcal{F}}_{ab} & \mathcal{Q} \ \overline{\mathcal{A}}_{a} \longrightarrow \mathcal{Q} \ \overline{\mathcal{U}}_{a} = 0 \\ & \mathcal{Q} \ \eta = d & \mathcal{Q} \ d = 0 \end{array}$$

Backup: Sign problems

Recall typical algorithms sample field configurations Φ with probability $\frac{1}{\mathcal{Z}}e^{-S[\Phi]}$ \longrightarrow "sign problem" if action $S[\Phi]$ can be negative or complex

Lattice SYM has complex pfaffian $pf D = |pf D| e^{i\alpha}$

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int [d\mathcal{U}] [d\overline{\mathcal{U}}] \mathcal{O} e^{-S_{\mathcal{B}}[\mathcal{U},\overline{\mathcal{U}}]} \operatorname{pf} \mathcal{D}[\mathcal{U},\overline{\mathcal{U}}]$$

We phase quench $pf \mathcal{D} \longrightarrow |pf \mathcal{D}|$, need to reweight $\langle \mathcal{O} \rangle = \frac{\langle \mathcal{O} e^{i\alpha} \rangle_{pq}}{\langle e^{i\alpha} \rangle_{pq}}$

$$\Rightarrow \left\langle e^{i\alpha} \right\rangle_{pq} = \frac{Z}{Z_{pq}}$$
 quantifies severity of sign problem

Backup: 2d maximal SYM phase diagram

arXiv:1709.07025

Dimensionally reduce to 2d $\mathcal{N} = (8, 8)$ SYM on $(r_L \times r_\beta)$ torus with four scalar \mathcal{Q}

Low temperatures $t = 1/r_{\beta} \iff$ black holes in dual supergravity

Backup: Dimensional reduction to 2d $\mathcal{N} = (8, 8)$ SYM

Naive for now: 4d $\mathcal{N} = 4$ SYM code with $N_x = N_y = 1$

 $A_4^* \longrightarrow A_2^*$ (triangular) lattice

Torus **skewed** depending on $\alpha = L/N_t$

Modular transformation into fundamental domain \longrightarrow some skewed tori actually rectangular

Again need to stabilize compactified links to ensure broken center symmetries

Backup: 2d spatial deconfinement transition signals

Peaks in Wilson line susceptibility match change in its magnitude |PL|, grow with size of SU(*N*) gauge group, comparing *N* = 6, 9, 12

Agreement for 16×4 vs. 24×6 lattices (aspect ratio $\alpha = r_L/r_\beta = 4$)

Backup: 2d Wilson line eigenvalues

Large-*N* eigenvalue phase distribution also signals spatial deconfinement

Left: $\alpha = 1/2$ distributions more localized as *N* increases \longrightarrow D0 black hole

Right: $\alpha = 2$ distributions more uniform as *N* increases \longrightarrow D1 black string

Backup: Lattice results for 2d $\mathcal{N} = (8, 8)$ SYM phase diagram

Good agreement with bosonic QM at high temperatures ($\alpha \gtrsim$ 4)

Harder to control low-temperature uncertainties (larger N > 16 should help)

Overall consistent with holography

Comparing multiple lattice sizes and $6 \le N \le 16$

Controlled extrapolations are work in progress

Backup: 2d holographic black hole energies

Lattice results consistent with leading expectation for sufficiently low $t \lesssim 0.4$

Similar behavior \longrightarrow difficult to distinguish phases $\propto t^{3.2}$ for small- r_l D0 phase

 $\propto t^3$ for large- r_L D1 phase

Backup: $\mathcal{N} = (2, 2)$ SYM

arXiv:2109.01001

Much simpler twisted formulation: Q = 4 supercharges $\{Q, Q_a, Q_{ab}\}$ \longrightarrow site / link / plaquette fermions $\{\eta, \psi_a, \chi_{ab}\}$ on square lattice (a, b = 1, 2)

Backup: High-temperature ($t \gtrsim 1$) 3d maximal SYM

Wilson line eigenvalue phases localized rather than uniform (left)

Thermodynamics consistent with weak-coupling expectation $\propto t^3$ (right)

