Lattice strong dynamics for composite Higgs sectors

David Schaich (U. Liverpool)

Fundamental Particle Physics Seminar, 27 April 2022

and more to come

with the Lattice Strong Dynamics Collaboration
Overview and plan

Lattice field theory is a broadly applicable tool to study strongly coupled near-conformal theories

Composite Higgs motivation for near-conformal lattice studies

Light scalar and low-energy effective theory connection

Mass-split systems for improved control

More: S parameter, partial compositeness, grav. waves, . . .

These slides: davidschaich.net/talks/2204Liverpool.pdf

Interaction encouraged — complete coverage unnecessary
Motivation from composite Higgs sectors

Large Hadron Collider priority
Study fundamental nature of the Higgs

Composite Higgs sector
can stabilize electroweak scale

New strong dynamics must differ from QCD
—Flavour-changing neutral currents
—Electroweak precision observables
—SM-like Higgs boson with $M \approx 0.5 v_{EW}$
Near-conformality for composite Higgs

New strong dynamics must differ from QCD
— Flavour-changing neutral currents
— Electroweak precision observables
— SM-like Higgs boson with $M \approx 0.5 v_{EW}$

Near-conformal dynamics can help with all three issues

Near-conformality \rightarrow natural scale separation, novel IR dynamics

Can’t rely on intuition from QCD or $\mathcal{N} = 4$ SYM \rightarrow lattice calculations
Lattice field theory in a nutshell

Formally

\[\langle O \rangle = \frac{1}{Z} \int D\Phi \, O(\Phi) \, e^{-S[\Phi]} \]

Regularize by formulating theory in finite, discrete, euclidean space-time

\[\xleftarrow{\text{Gauge invariant, non-perturbative, 4-dimensional}} \]

Spacing between lattice sites ("a")

\[\rightarrow \text{UV cutoff scale } \frac{1}{a} \]

Remove cutoff: \[a \rightarrow 0 \quad (L/a \rightarrow \infty) \]

Hypercubic \[\rightarrow \text{Poincaré symmetries } \checkmark \]
Numerical lattice field theory calculations

High-performance computing \(\rightarrow\) evaluate up to \(\sim\) billion-dimensional integrals
(Dirac operator as \(\sim 10^9 \times 10^9\) matrix)

Results to be shown, and work in progress, require state-of-the-art resources

Many thanks to USQCD–DOE, DiRAC–STFC–UKRI, and computing centres!

Lassen @Livermore
USQCD @JLab
DiRAC @Cambridge
Numerical lattice field theory algorithms

Importance sampling Monte Carlo

Algorithms sample field configurations with probability

\[
\langle O \rangle = \frac{1}{Z} \int D\Phi \ O(\Phi) \ e^{-S[\Phi]} \quad \rightarrow \quad \frac{1}{N} \sum_{i=1}^{N} O(\Phi_i) \quad \text{with stat. uncertainty} \quad \propto \quad \frac{1}{\sqrt{N}}
\]

David Schaich (Liverpool)
Numerical lattice field theory algorithms

Importance sampling Monte Carlo

Algorithms sample field configurations with probability $\frac{1}{Z} e^{-S[\Phi]}$

$$
\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}\Phi \; \mathcal{O}(\Phi) \; e^{-S[\Phi]} \rightarrow \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}(\Phi_i) \text{ with stat. uncertainty } \propto \frac{1}{\sqrt{N}}
$$

Lattice calculation requires specific theory \leftrightarrow lattice action $S[\Phi]$

Our strategy aims to gain generic insights into near-conformal strong dynamics
Exploring the range of possible phenomena in strongly coupled field theories
Choosing near-conformal theories to analyze for generic insights

For SU(3) gauge group, observe near-conformal strong dynamics for $8 \lesssim N_F \lesssim 10$ light fundamental fermions

Intermediate between $N_F = 2$ QCD and weakly coupled Banks–Zaks IR fixed point for $N_F \simeq 16$ (massless)
From new strong dynamics to electroweak symmetry breaking

For SU(3) with N_F light fundamental fermions, chiral symmetry breaking is

$$\text{SU}(N_F)_L \times \text{SU}(N_F)_R \rightarrow \text{SU}(N_F)_V$$

Lattice studies of strong sector apply to two distinct model interpretations

1) Electroweak symmetry breaks directly

$$\text{SU}(2)_L \times U(1)_Y \subset \text{SU}(N_F)_L \times \text{SU}(N_F)_R \rightarrow U(1)_{\text{em}} \subset \text{SU}(N_F)_V$$

2) Electroweak symmetry breaks radiatively via vacuum misalignment

$$\text{SU}(N_F)_V \supset \text{SU}(2)_L \times U(1)_Y \rightarrow U(1)_{\text{em}}$$
From new strong dynamics to electroweak symmetry breaking

For SU(3) with N_F light fundamental fermions, chiral symmetry breaking is

$$\text{SU}(N_F)_L \times \text{SU}(N_F)_R \rightarrow \text{SU}(N_F)_V$$

Lattice studies of strong sector apply to two distinct model interpretations

1) Electroweak symmetry breaks directly

$$\Rightarrow \text{Symmetry breaking scale } F^2 = v^2_{\text{EW}} = (246 \text{ GeV})^2$$

$$\Rightarrow \text{Higgs boson as } 0^{++} \text{ isosinglet scalar (`}\sigma`')$$

2) Electroweak symmetry breaks radiatively via vacuum misalignment

$$\Rightarrow \text{Symmetry breaking scale } F^2 = v^2_{\text{EW}}/\xi \text{ with } \xi \lesssim 0.1$$

$$\Rightarrow \text{Higgs boson as pseudo-Goldstone (`}\pi`')$$

[affected by 0^{++}]
\(N_F = 8\) light composite spectrum

Light \(0^{++}\) scalar observed, \(M_\sigma \approx M_\pi \lesssim M_\rho/2\) qualitatively different than QCD

Improved staggered fermions

Masses in units of lattice scale \(\sqrt{8t_0}\)

\[L \geq 5.3/(a \cdot M_\pi) \rightarrow \text{up to } 64^3 \times 128\]

\([96^3 \times 192 \text{ with } \sqrt{8t_0} m_f \sim 0.003 \text{ in progress}]\)

Large \(0^{++}\) uncertainties from mixing with vacuum

[novel re-analyses also in progress]
Light scalar is generic feature of near-conformal dynamics

Consistently observed by many groups considering various theories

✓ SU(3) with $N_F = 8$ fundamental

✓ SU(3) with $N_F = 12$ fundamental

arXiv:1710.08970
Light scalar is generic feature of near-conformal dynamics

Consistently observed by many groups considering various theories

✓ SU(3) with $N_F = 8$ fundamental
✓ SU(3) with $N_F = 12$ fundamental
✓ SU(3) with $N_F = 2$ sextet
Light scalar is generic feature of near-conformal dynamics

Consistently observed by many groups considering various theories

✓ SU(3) with \(N_F = 8 \) fundamental
✓ SU(3) with \(N_F = 12 \) fundamental
✓ SU(3) with \(N_F = 2 \) sextet
✓ SU(2) with \(N_F = 2 \) adjoint
Light scalar is generic feature of near-conformal dynamics

Consistently observed by many groups considering various theories

✓ SU(3) with $N_F = 8$ fundamental
✓ SU(3) with $N_F = 12$ fundamental
✓ SU(3) with $N_F = 2$ sextet
✓ SU(2) with $N_F = 2$ adjoint
✓ SU(2) with $N_F = 1$ adjoint

\[\beta = 2.05 \quad \beta = 2.1 \quad \beta = 2.15 \quad \beta = 2.2 \]

\[2^+ \text{ scalar baryon} \quad 2^- \text{ pseudoscalar baryon} \quad 2^- \text{ vector baryon} \quad 0^{++} \text{ scalar glueball} \]
$M_\rho/F_\pi \approx 8$ naively implies resonance $\sim 2\,\text{TeV}/\sqrt{\xi}$ — with broad $\Gamma_\rho/M_\rho \approx 0.2$

This may be too naive

1) Need $M_\pi/F_\pi \to 0$ as $m_f \to 0$

2) Need exactly 3 massless pions, other $N_F^2 - 4 = 60$ stay massive

Chiral extrapolation relies on low-energy effective field theory (EFT)
Low-energy chiral effective theories

Chiral perturbation theory (χPT) is EFT of pions familiar from QCD

Need to extend χPT to incorporate light scalar, with power-counting rules to organize interactions

Several candidate EFTs currently being explored

—Completely generic (no assumptions, many parameters)
 [Soto–Talavera–Tarrus; Hansen–Langaebel–Sannino; Catà–Müller]

—Based on linear sigma model
 [LSD, arXiv:1809.02624]

—Treating scalar as ‘dilaton’, pseudo-Goldstone of broken scale invariance
 [Matsuzaki–Yamawaki; Golterman–Shamir; Appelquist–Ingoldby–Piai]
Use lattice results to test candidate EFTs

— Completely generic (no assumptions, many parameters)
— Based on linear sigma model
— Treating scalar as ‘dilaton’, pseudo-Goldstone of broken scale invariance

Work in progress to test and compare EFTs — limited lattice results available
Focus on well-developed dilaton-EFT with relatively few parameters

Compute more results to input — two-pion elastic scattering
\(I = 2 \) s-wave pion scattering

Same-sign \(\pi^\pm\pi^\pm \) scattering avoids challenging ‘disconnected’ contributions

[Work in progress to relate to \(W^\pm W^\pm \) scattering via EFTs — cf. arXiv:1201.3977]
\(I = 2 \) s-wave pion scattering

Same-sign \(\pi^+\pi^- \) scattering avoids challenging ‘disconnected’ contributions

Well-established path from finite-volume interaction energy
to low-momentum scattering length \(a_{\pi\pi} \) and effective range \(r_{\pi\pi} \)

\[
k^2 = \frac{E_{\pi\pi}^2}{4} - M_{\pi}^2
\]

\[
\frac{1}{\pi L} \left[\sum_{\vec{j} \neq 0}^{\Lambda} \frac{4\pi^2}{4\pi^2 |\vec{j}|^2 - k^2 L^2} \right] - 4\pi\Lambda = \frac{1}{a_{\pi\pi}} + \frac{1}{2} M_{\pi}^2 r_{\pi\pi} \left(\frac{k^2}{M_{\pi}^2} \right) + \mathcal{O} \left(\frac{k^4}{M_{\pi}^4} \right)
\]
N_F = 8 scattering results

Six-parameter fit to tree-level dilaton-EFT
\[\chi^2/\text{dof} \approx 55/18 \] suggests NLO will matter
(still far better than QCD-like \(\chi \)PT)

Parameters suppress dilaton effects:
\[M_\pi a_{\pi\pi} = -\frac{M_\pi^2}{16\pi^2 F_\pi^2} \left[1 - O(10^{-3}) \frac{M_\pi^2}{M_\sigma^2} \right] \]

Grey band estimates size of NLO effects
to be considered in future work
$N_F = 8$ scattering results

Six-parameter fit to tree-level dilaton-EFT

Parameters suppress dilaton effects:

$$M_\pi a_{\pi \pi} = -\frac{M_\pi^2}{16\pi^2 F_\pi^2} \left[1 - \mathcal{O} \left(10^{-3} \right) \frac{M_\pi^2}{M_\sigma^2} \right]$$

Grey band estimates size of NLO effects to be considered in future work

$I = 0$ scattering another future possibility
Splitting $N_F = 10 \rightarrow 4 + 6$ for improved control

Consider four light flavours (mass \tilde{m}_ℓ) and six heavy flavours (mass \tilde{m}_h)

[switch to domain-wall fermions — better symmetries, larger costs]

In UV, effectively massless $N_F = 10 \rightarrow$ flow toward conformal IR fixed point

Around $\Lambda_{IR} \sim \tilde{m}_h$ heavy flavours decouple

Subsequent 4-flavour symmetry breaking \rightarrow composite Higgs sensitive to 10-flavour IR fixed point
Splitting $N_F = 10 \rightarrow 4 + 6$ for improved control

Consider four light flavours (mass \tilde{m}_ℓ) and six heavy flavours (mass \tilde{m}_h)

Flow toward IR fixed point \longrightarrow bare gauge coupling $\beta = 6/g_0^2$ irrelevant

$$\frac{\Lambda_{UV}}{\Lambda_{IR}} \sim \frac{1}{a \cdot \tilde{m}_h} \rightarrow a \rightarrow 0 \text{ continuum limit is } a \cdot \tilde{m}_h \rightarrow 0 \text{ (with $\tilde{m}_\ell / \tilde{m}_h$ fixed)}$$

Chiral limit is $\tilde{m}_\ell / \tilde{m}_h \rightarrow 0$ and then no free parameters remain
Continuum limit is \(a \cdot \tilde{m}_h \to 0 \) (with \(\tilde{m}_\ell / \tilde{m}_h \) fixed)

Lattice spacing decreases as heavy mass decreases.

Obeys conformal hyperscaling relation

\[
\frac{a}{\sqrt{8 t_0}} = \tilde{m}_h^{1/y_m} \Phi_a(\tilde{m}_\ell / \tilde{m}_h)
\]

Fit quadratic ansatz for \(\Phi_a(\tilde{m}_\ell / \tilde{m}_h) \)

\(\rightarrow \) mass anomalous dimension

\(\gamma_m = y_m - 1 = 0.47(2) \)

\(y_m = 1.469(23) \)
$N_F = 4 + 6$ hyperscaling and mass anomalous dimension

Spectrum also exhibits hyperscaling

Here pseudoscalar decay constants

\[a \cdot F = \tilde{m}_h^{1/y_m} \Phi_F(\tilde{m}_\ell/\tilde{m}_h) \]

Fit polynomial ansatz for $\Phi_F(\tilde{m}_\ell/\tilde{m}_h)$

\[\longrightarrow \text{mass anomalous dimension} \]

\[\gamma_m = y_m - 1 = 0.47(5) \]

Large anomalous dim’s from strong dynamics phenomenologically desirable
Testing dilaton-EFT with $N_F = 4 + 6$

Dilaton-EFT relation:

$$\frac{M^2}{F^2} = \frac{1}{y_m d_1} W_0 \left(\frac{y_m d_1}{d_2} \frac{\tilde{m}_\ell/\tilde{m}_h}{\Phi_a(0) \sqrt{8 t_0}} \right)$$

in terms of Lambert W-function

Fix y_m from hyperscaling

Good fit suggests light scalar

(still to be analyzed directly)

$I = 2$ scattering calculations done via DiRAC, analyses ongoing [C. Culver]

Domain-wall fermions also assist S param. and partial compositeness analyses
Electroweak precision observable — the S parameter

Constrain Higgs sector from vector-minus-axial vacuum polarization $\Pi_{V-A}(Q)$

$$\gamma, \ Z \xrightarrow{\text{new}} Q \rightarrow \gamma, \ Z$$

Experimental $S = -0.01 \pm 0.10$

vs. QCD-like $S \approx 0.43 \sqrt{\xi}$

Related to χPT low-energy constant L_{10}

Domain-wall fermion symmetries important
S parameter on the lattice

$$\mathcal{L}_\chi \supset -\frac{S}{32\pi^2} g_1 g_2 B_{\mu\nu} \text{Tr} \left[U_\tau U_\tau^\dagger W^{\mu\nu} \right] \rightarrow \gamma, Z$$

Prior LSD study of $N_F = 2, 6, 8$ \[arXiv:1405.4752\]

$N_F = 4 + 6$ planned for the near future

$$S/\sqrt{\xi} = 0.42(2) \text{ for } N_F = 2 \text{ matches QCD } \checkmark$$

Significant reduction from larger N_F,
chiral extrapolation again challenging

$V-A$ vacuum polarization also contributes to Higgs potential \[arXiv:1903.02535\]
Anomalous dimensions for partial compositeness

Old challenge for new strong dynamics

Quark & lepton masses \(\sim \frac{\bar{q}q\bar{\psi}\psi}{\Lambda_{UV}^2} \) vs. flavour-changing NCs \(\sim \frac{\bar{q}q\bar{q}q}{\Lambda_{UV}^2} \)

Partial compositeness alternative

Linear mixing with composite partners

\[\mathcal{L} \supset \lambda \bar{q}O_q + \text{h.c.} \]

\[\longrightarrow m_q \sim v_{EW} \left(\frac{\text{TeV}}{\Lambda_{UV}} \right)^{4-2\gamma_q} \]

Large mass hierarchy \(\longleftrightarrow \mathcal{O}(1) \) anomalous dimensions
Anomalous dimensions for partial compositeness

Partial compositeness alternative
Linear mixing with composite partners

\[
\mathcal{L} \supset \lambda \bar{q}O_q + \text{h.c.} \\
\rightarrow m_q \sim v_{\text{EW}} \left(\frac{\text{TeV}}{\Lambda_{UV}} \right)^{4-2\gamma_q}
\]

Large mass hierarchy $\leftrightarrow \mathcal{O}(1)$ anomalous dimensions

Example: $\Lambda_{UV} = 10^{10} \text{ TeV} \rightarrow m_q \sim \mathcal{O}(\text{MeV})$ from $\gamma_q \approx 1.75$

$m_q \sim \mathcal{O}(\text{GeV})$ from $\gamma_q \approx 1.9$
Plans for partial compositeness on the lattice

For SU(3) theories \(\mathcal{O}_q \sim \psi \psi \psi \sim \) baryons with scaling dim. \([\mathcal{O}_q] = \frac{9}{2} - \gamma_q \)

Plan \(N_F = 4 + 6 \) predictions \(\gamma_q = -\frac{d \log Z_{\mathcal{O}_q}(\mu)}{d \log \mu} \) from RI/MOM non-pert. renorm.

and from ratios of gradient-flowed operators \(\propto t^{\gamma_q/2} \) [arXiv:1806.01385]

\[m_q \sim v_{\text{EW}} \left(\frac{\text{TeV}}{\Lambda_{\text{UV}}} \right)^{4-2\gamma_q} \]
Gravitational waves from early-universe phase transition

First-order chiral transition \rightarrow stochastic background of gravitational waves

Massless $N_F = 4$ transition is first-order

Then compute properties of transition: latent heat, nucleation rate, etc.
Recap and outlook

Lattice field theory is a broadly applicable tool to study strongly coupled near-conformal theories

Near-conformality useful for new strong dynamics
—Light scalar observed, so far consistent with dilaton-EFT
—Reduced S parameter
—Natural scale separation for flavour physics

Ongoing investigations of mass-split $N_F = 4 + 6$ system
—S parameter and $I = 2$ scattering
—Baryon scaling dimensions for partial compositeness
—Finite-temperature transitions \rightarrow gravitational waves
Thanks for your attention!

Any further questions?

Funding and computing resources
In lattice QCD, isosinglet scalar mass $M_S \gtrsim 2M_P$ → significant mixing with $I = 0$ two-pion scattering states

arXiv:1607.05900
Backup: Direct comparison of QCD-like and near-conformal 0^{++}

\[N_f = 4 \]

\[N_f = 8 \]

$N_F = 8$ scalar much lighter than $M_\sigma \approx 2M_\pi$ for QCD-like $N_F = 4$
Monotonic step-scaling ($\sim -\beta$) function and increasing M_ρ/M_π are evidence against conformal IR fixed point
Backup: Width of \(N_F = 8 \) vector resonance

\[
F_\rho = \sqrt{2} F_\pi
\]

\[
g_{\rho\pi\pi} = \frac{M_\rho}{\sqrt{2} F_\pi}
\]

Riazuddin–Fayyazuddin, 1966

Kawarabayashi–Suzuki, 1966

Can derive from current algebra, hidden local symmetry, chiral EFT

Can derive from current algebra, hidden local symmetry, chiral EFT

Confirm first KSRF relation, then apply second

\[
\Gamma_\rho = \frac{g_{\rho\pi\pi}^2 M_\rho}{48\pi} \simeq 450 \text{ GeV}/\sqrt{\xi} \quad \text{—— hard to see at LHC}
\]
L_s copies of 4d gauge fields (expensive with $L_s = 16$!)

Localized fermions have renormalized mass $m = m_f + m_{\text{res}}$

with residual mass $m_{\text{res}} \ll m_f$ from overlap around $L_s/2$

$L_s \to \infty \quad \longrightarrow \quad$ exact chiral symmetry at non-zero lattice spacing
Backup: $N_F = 10$ step-scaling function (SSF)

SSF \sim negative of β function integrated over $s = 2 \times$ scale change.

Lattice calculations use finite-volume gradient flow schemes parameterized by c (here $c = 0.3$).

Evidence for conformal IR fixed point at strong $g_c^2 \sim 13$ in $c = 0.3$ scheme.

Change to $c = 0.25 \rightarrow \beta_2 = 0$ for $g_c^2 \approx 11$ with larger systematic uncertainties.