Lattice studies of supersymmetric Yang–Mills in 2+1 dimensions

David Schaich (Liverpool)

Relativistic Fermions in Flatland ECT* Trento 9 July 2021

arXiv:1810.09282 arXiv:2010.00026 and more to come with S. Catterall, J. Giedt, R. G. Jha, A. Sherletov & T. Wiseman

Overview and plan

2+1 dimensions is a promising frontier for practical lattice studies of supersymmetric QFTs

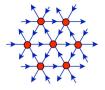
Why: Lattice supersymmetry motivation

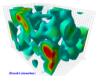
How: Lattice formulation highlights

What: Recent, ongoing & planned 3d work Maximally supersymmetric Yang–Mills (SYM)

Half-maximal SYM

Supersymmetric QCD





Overview and plan

2+1 dimensions is a promising frontier for practical lattice studies of supersymmetric QFTs

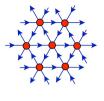
Why: Lattice supersymmetry motivation

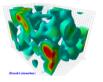
How: Lattice formulation highlights

What: Recent, ongoing & planned 3d work

These slides: davidschaich.net/talks/2107ECT.pdf

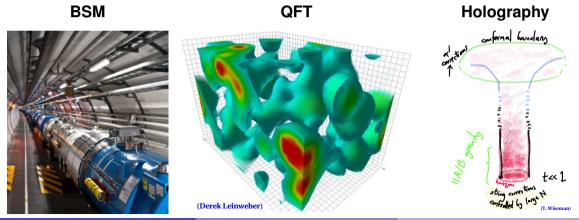
Interaction encouraged — complete coverage unnecessary





Motivations

Lattice field theory promises first-principles predictions for strongly coupled supersymmetric QFTs

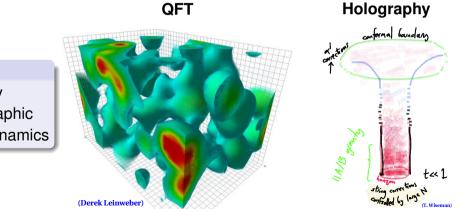


David Schaich (Liverpool)

3d lattice SYN

Motivations

Lattice field theory promises first-principles predictions for strongly coupled supersymmetric QFTs

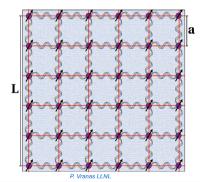


2+1 dimensions Rich field theory and holographic dynamics

David Schaich (Liverpool)

3d lattice SYM

Quick reminder: Lattice regularization in the QFT context Formally $\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]}$



Spacing between lattice sites ("a") \longrightarrow UV cutoff scale 1/a

Remove cutoff: $a \rightarrow 0$ $(L/a \rightarrow \infty)$

Discrete \longrightarrow continuous symmetries \checkmark

David Schaich (Liverpool)

3d lattice SYM

Supersymmetry must be broken on the lattice

Supersymmetry is a space-time symmetry, $(I = 1, \dots, N)$ adding spinor generators Q^{I}_{α} and $\overline{Q}^{I}_{\dot{\alpha}}$ to translations, rotations, boosts

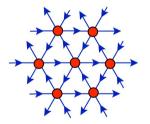
 $\left\{ Q^{\mathrm{I}}_{\alpha}, \overline{Q}^{\mathrm{J}}_{\dot{\alpha}} \right\} = 2 \delta^{\mathrm{IJ}} \sigma^{\mu}_{\alpha \dot{\alpha}} P_{\mu}$ broken in discrete space-time

 \longrightarrow relevant susy-violating operators

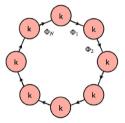
Supersymmetry need not be *completely* broken on the lattice

 $\begin{array}{l} \mbox{Preserve susy sub-algebra in discrete lattice space-time} \\ \implies \mbox{correct continuum limit with little or no fine tuning} \end{array}$

Equivalent constructions from 'topological' twisting and dim'l deconstruction



Review: Catterall–Kaplan–Ünsal, arXiv:0903.4881



Need $Q = 2^d$ supersymmetries in *d* dimensions

 $d=3 \longrightarrow$ Super-Yang–Mills (SYM) with Q=8 or (maximal) Q=16

David Schaich (Liverpool)

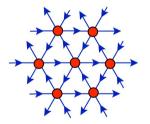
3d lattice SYM

ECT*, 9 July 2021 5/29

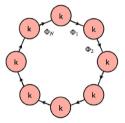
Supersymmetry need not be *completely* broken on the lattice

 $\begin{array}{l} \mbox{Preserve susy sub-algebra in discrete lattice space-time} \\ \implies \mbox{correct continuum limit with little or no fine tuning} \end{array}$

Equivalent constructions from 'topological' twisting and dim'l deconstruction



Review: Catterall–Kaplan–Ünsal, arXiv:0903.4881



Need $Q = 2^d$ supersymmetries in *d* dimensions

 $d = 3 \longrightarrow$ Super-Yang–Mills (SYM) with Q = 8 or (maximal) Q = 16

David Schaich (Liverpool)

3d lattice SYM

3d maximal SYM in a nutshell

May be easiest to grok as dimensional reduction of 4d N = 4 SYM (famous testing ground for dualities, amplitudes & more)

All fields massless and in adjoint rep. of SU(N) gauge group

4d: Gauge field A_{μ} plus 6 scalars Φ^{IJ}

 $\mathcal{N} = 4$ four-component fermions $\Psi^{I} \leftrightarrow 16$ supersymmetries Q^{I}_{α} and $\overline{Q}^{I}_{\dot{\alpha}}$ Global SU(4) ~ SO(6) R symmetry

3d: Gauge field A_{μ} plus 7 scalars Φ $\mathcal{N} = 8$ two-component fermions $\Psi \iff$ 16 supersymmetries Global SO(8) \supset SO(4) \sim SU(2) \times SU(2) R symmetry

Symmetries relate kinetic, Yukawa and Φ^4 terms \longrightarrow single coupling $\lambda = g^2 N$

Intuitive 4d picture — expand 4×4 matrix of supersymmetries

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \mathcal{Q}_{a}\gamma_{a} + \mathcal{Q}_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5 \end{cases}$$

R-symmetry index \times Lorentz index \implies reps of 'twisted rotation group'

$$\mathrm{SO(4)}_{\mathsf{tw}} \equiv \mathsf{diag} igg[\mathrm{SO(4)}_{\mathsf{euc}} \otimes \mathrm{SO(4)}_R igg] \hspace{1cm} \mathrm{SO(4)}_R \subset \mathrm{SO(6)}_R$$

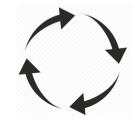
Change of variables $\longrightarrow Qs$ transform with integer 'spin' under SO(4)_{tw}

David Schaich (Liverpool)

Intuitive 4d picture — expand 4×4 matrix of supersymmetries

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \mathcal{Q}_{a}\gamma_{a} + \mathcal{Q}_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5 \end{cases}$$

Discrete space-time
Can preserve closed sub-algebra
$$\{\mathcal{Q}, \mathcal{Q}\} = 2\mathcal{Q}^2 = 0$$



Intuitive 4d picture — expand 4×4 matrix of supersymmetries

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \mathcal{Q}_{a}\gamma_{a} + \mathcal{Q}_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5 \end{cases}$$

Discrete space-time
Can preserve closed sub-algebra
$$\{Q, Q\} = 2Q^2 = 0$$

David Schaich (Liverpool)

 \odot

Reducing to 3d $\{Q, Q_a, Q_{ab}\} \longrightarrow \{Q, Q_5, Q_a, Q_{a5}, Q_{ab}\}$ with $a, b = 1, \dots, 4$

Twisted rotation group now

$$\mathrm{SO(3)}_{\mathsf{tw}} \equiv \mathsf{diag} igg[\mathrm{SO(3)}_{\mathsf{euc}} \otimes \mathrm{SO(3)}_R igg] \hspace{1cm} \mathrm{SO(3)}_R \subset \mathrm{SO(4)}_R$$

Two closed supersymmetry sub-algebras

$$\{\mathcal{Q},\mathcal{Q}\}=2\mathcal{Q}^2=0$$

$$\{\mathcal{Q}_5,\mathcal{Q}_5\}=2\mathcal{Q}_5^2=0$$

Completing the twist

Fields also transform with integer spin under $SO(4)_{tw}$ — no spinors

$$\Psi$$
 and $\overline{\Psi}$ \longrightarrow $\eta,$ ψ_{a} and χ_{ab}

 A_{μ} and $\Phi^{I} \longrightarrow$ complexified gauge field A_{a} and \overline{A}_{a} $\longrightarrow U(N) = SU(N) \otimes U(1)$ gauge theory

 $\checkmark \ \mathcal{Q} \ \ \text{interchanges bosonic} \ \longleftrightarrow \ \ \text{fermionic d.o.f.} \ \ \text{with} \ \ \mathcal{Q}^2 = 0$

 $\begin{array}{lll} \mathcal{Q} \ \mathcal{A}_{a} = \psi_{a} & \mathcal{Q} \ \psi_{a} = 0 \\ \mathcal{Q} \ \chi_{ab} = -\overline{\mathcal{F}}_{ab} & \mathcal{Q} \ \overline{\mathcal{A}}_{a} = 0 \\ \mathcal{Q} \ \eta = d & \mathcal{Q} \ d = 0 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

Completing the twist

Fields also transform with integer spin under $SO(4)_{tw}$ — no spinors

 Ψ and $\overline{\Psi} \longrightarrow \eta$, ψ_a and χ_{ab}

 A_{μ} and $\Phi^{I} \longrightarrow$ complexified gauge field A_{a} and \overline{A}_{a} $\longrightarrow U(N) = SU(N) \otimes U(1)$ gauge theory

 $\checkmark \ {\cal Q} \,$ interchanges bosonic $\, \longleftrightarrow \,$ fermionic d.o.f. with $\ {\cal Q}^2 = 0$

${\cal Q} \; {\cal A}_{m{a}} = \psi_{m{a}}$	${\cal Q} \; \psi_{a} = {\sf 0}$
${\cal Q} \; \chi_{ab} = - \overline{{\cal F}}_{ab}$	$\mathcal{Q} \; \overline{\mathcal{A}}_a = 0$
$\mathcal{Q} \ \eta = {oldsymbol{d}}$	$\mathcal{Q} \ d = 0$

Dimensional reduction rearranges fermions and takes $\mathcal{A}_5, \overline{\mathcal{A}}_5 \longrightarrow \varphi, \overline{\varphi}$

David Schaich (Liverpool)

Lattice maximal SYM

Lattice theory looks nearly the same despite breaking Q_a and Q_{ab}

Covariant derivatives \longrightarrow finite difference operators

Complexified gauge fields $\mathcal{A}_a \longrightarrow$ gauge links $\mathcal{U}_a \in \mathfrak{gl}(N, \mathbb{C})$

$$\begin{array}{ll} \mathcal{Q} \ \mathcal{A}_{a} \longrightarrow \mathcal{Q} \ \mathcal{U}_{a} = \psi_{a} & \mathcal{Q} \ \psi_{a} = 0 \\ & \mathcal{Q} \ \chi_{ab} = -\overline{\mathcal{F}}_{ab} & \mathcal{Q} \ \overline{\mathcal{A}}_{a} \longrightarrow \mathcal{Q} \ \overline{\mathcal{U}}_{a} = 0 \\ & \mathcal{Q} \ \eta = d & \mathcal{Q} \ d = 0 \end{array}$$

Geometry: η on sites, ψ_a on links, etc.

Supersymmetric lattice action (QS = 0) from $Q^2 \cdot = 0$ and Bianchi identity

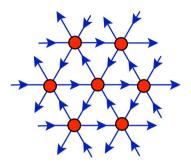
$$S = \frac{N}{4\lambda_{\text{lat}}} \text{Tr} \left[\mathcal{Q} \left(\chi_{ab} \mathcal{F}_{ab} + \eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a} - \frac{1}{2} \eta d \right) - \frac{1}{4} \epsilon_{abcde} \chi_{ab} \overline{\mathcal{D}}_{c} \chi_{de} \right]$$

d + 1 links in d dimensions $\longrightarrow A_d^*$ lattice

 $A^*_d \sim d$ -dimensional analog of 2d triangular lattice

Basis vectors linearly dependent and non-orthogonal

Large S_{d+1} point group symmetry



 S_{d+1} irreps precisely match onto irreps of twisted SO(d)_{tw}. 4d example:

$$\psi_a \longrightarrow \psi_\mu, \ \overline{\eta} \qquad \text{is} \qquad \mathbf{5} \longrightarrow \mathbf{4} \oplus \mathbf{1}$$

 $\chi_{ab} \longrightarrow \chi_{\mu\nu}, \ \overline{\psi}_\mu \qquad \text{is} \qquad \mathbf{10} \longrightarrow \mathbf{6} \oplus \mathbf{4}$

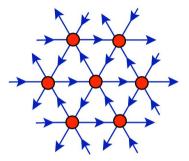
 $S_{d+1} \longrightarrow {
m SO}(d)_{
m tw}$ in continuum limit restores ${\mathcal Q}_a$ and ${\mathcal Q}_{ab}$

d + 1 links in d dimensions $\longrightarrow A_d^*$ lattice

 $A^*_d \sim d$ -dimensional analog of 2d triangular lattice

Basis vectors linearly dependent and non-orthogonal

Large S_{d+1} point group symmetry



Twisted maximal SYM on A_d^* lattice is elegant formulation not yet practical for numerical calculations

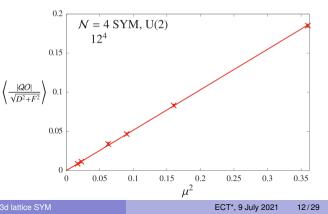
Must regulate zero modes and flat directions, especially in U(1) sector

Deformations to stabilize lattice calculations

1) Add SU(*N*) scalar potential
$$\propto \mu^2 \sum_a \text{Tr} \left[\left(\mathcal{U}_a \overline{\mathcal{U}}_a - \mathbb{I}_N \right)^2 \right]$$

Softly breaks susy $\longrightarrow \mathcal{Q}$ -violating operators vanish $\propto \mu^2 \rightarrow 0$

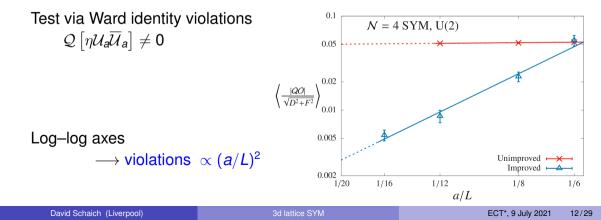
Test via Ward identity violations $\mathcal{Q}\left[\eta\mathcal{U}_{a}\overline{\mathcal{U}}_{a}\right]\neq0$



Deformations to stabilize lattice calculations

2) Constrain U(1) plaquette determinant $\sim G \sum_{a < b} (\det \mathcal{P}_{ab} - 1)$

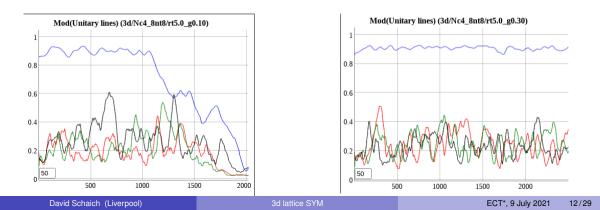
Implemented supersymmetrically by modifying auxiliary field equations of motion



Deformations to stabilize lattice calculations

Enable naive dimensional reduction (4d code with $N_x = 1$)

3) Potential $\propto \text{Tr}\left[(\varphi - \mathbb{I}_N)^{\dagger}(\varphi - \mathbb{I}_N)\right]$ to break center symmetry in reduced dir(s) (~Kaluza–Klein rather than Eguchi–Kawai reduction)



Public code for supersymmetric lattice field theories

so that the full improved action becomes

$$S_{\rm imp} = S'_{\rm exact} + S_{\rm closed} + S'_{\rm soft} \tag{18}$$

$$S'_{\rm exact} = \frac{N}{4\lambda_{\rm lat}} \sum_{n} \operatorname{Tr} \left[-\overline{\mathcal{F}}_{ab}(n)\mathcal{F}_{ab}(n) - \chi_{ab}(n)\mathcal{D}_{[a}^{(+)}\psi_{b]}(n) - \eta(n)\overline{\mathcal{D}}_{a}^{(-)}\psi_{a}(n) + \frac{1}{2} \left(\overline{\mathcal{D}}_{a}^{(-)}\mathcal{U}_{a}(n) + G\sum_{a\neq b} \left(\det \mathcal{P}_{ab}(n) - 1\right)\mathbb{I}_{N} \right)^{2} \right] - S_{\rm det}$$

$$S_{\rm det} = \frac{N}{4\lambda_{\rm lat}}G\sum_{n} \operatorname{Tr} \left[\eta(n)\right] \sum_{a\neq b} \left[\det \mathcal{P}_{ab}(n)\right] \operatorname{Tr} \left[\mathcal{U}_{b}^{-1}(n)\psi_{b}(n) + \mathcal{U}_{a}^{-1}(n+\widehat{\mu}_{b})\psi_{a}(n+\widehat{\mu}_{b})\right]$$

$$S_{\rm closed} = -\frac{N}{16\lambda_{\rm lat}}\sum_{n} \operatorname{Tr} \left[\epsilon_{abcde} \chi_{de}(n+\widehat{\mu}_{a}+\widehat{\mu}_{b}+\widehat{\mu}_{c})\overline{\mathcal{D}}_{c}^{(-)}\chi_{ab}(n)\right],$$

$$S'_{\rm soft} = \frac{N}{4\lambda_{\rm lat}}\mu^{2}\sum_{n}\sum_{a}\left(\frac{1}{N}\operatorname{Tr} \left[\mathcal{U}_{a}(n)\overline{\mathcal{U}}_{a}(n)\right] - 1\right)^{2}$$

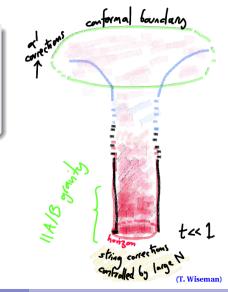
 \gtrsim 100 inter-node data transfers in the fermion operator — non-trivial...

Public parallel code to reduce barriers to entry: github.com/daschaich/susy Evolved from MILC QCD code, user guide in arXiv:1410.6971

David Schaich (Liverpool)

3d maximal SYM thermodynamics

arXiv:2010.00026



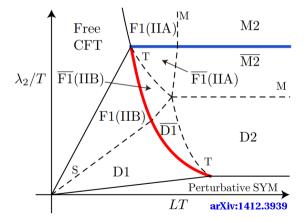
Formulate on $r_1 \times r_2 \times r_\beta$ (skewed) 3-torus

Thermal boundary conditions \longrightarrow dimensionless temperature $t = \frac{T}{\lambda} = \frac{1}{r_{\beta}}$

> Low temperatures t at large N \downarrow Black branes in dual supergravity

3d maximal SYM phase diagram

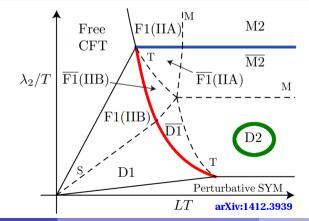
Holography \longrightarrow rich low-*t* phase diagram conjectured (simpler 2d case studied in arXiv:1709.07025)



3d maximal SYM phase diagram

Holography \longrightarrow rich low-*t* phase diagram conjectured

For now consider simplest homogeneous black D2-branes $\longrightarrow r_1 = r_2 = r_\beta$



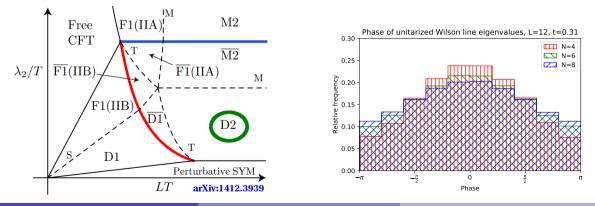
David Schaich (Liverpool)

3d lattice SYM

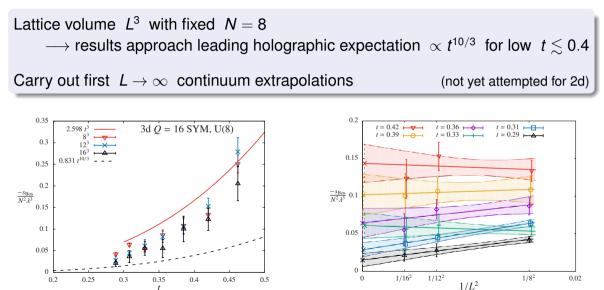
Homogeneous D2 phase

Lattice volume L^3 , continuum limit $L \rightarrow \infty$ with fixed $t = 1/r_{\beta}$

Homogeneous D2-branes \leftrightarrow uniform Wilson line eigenvalue phases at large N



Holographic black brane energies and continuum extrapolation



David Schaich (Liverpool)

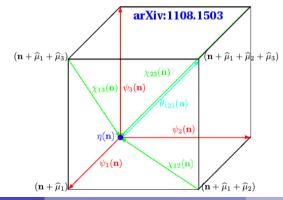
ECT*, 9 July 2021 17/29

Work in progress: Half-maximal (Q = 8) SYM

Slight simplification of twisted formulation

Q=8 supercharges $\{\mathcal{Q},\mathcal{Q}_{\textit{a}},\mathcal{Q}_{\textit{abc}},\mathcal{Q}_{\textit{abc}}\}$ with $\textit{a},\textit{b}=1,\cdots,3$

 \longrightarrow site / link / plaquette / cube fermions $\{\eta, \psi_a, \chi_{ab}, \theta_{abc}\}$ on simple cubic lattice



David Schaich (Liverpool)

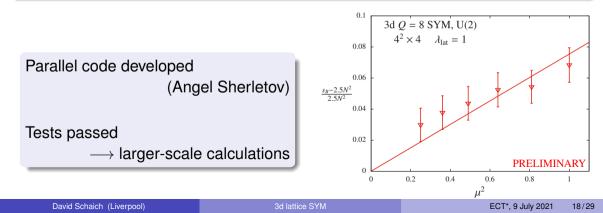
3d lattice SYM

Work in progress: Half-maximal (Q = 8) SYM

Slight simplification of twisted formulation

Q=8 supercharges $\{\mathcal{Q},\mathcal{Q}_a,\mathcal{Q}_{ab},\mathcal{Q}_{abc}\}$ with $a,b=1,\cdots,3$

 \longrightarrow site / link / plaquette / cube fermions $\{\eta, \psi_a, \chi_{ab}, \theta_{abc}\}$ on simple cubic lattice



Work coming up: Supersymmetric QCD

Add 'quarks' and squarks \longrightarrow investigate electric–magnetic dualities, dynamical supersymmetry breaking and more

Quiver construction based on twisted SYM [arXiv:1505.00467] preserves susy sub-algebra to reduce fine-tuning

David Schaich (Liverpool)
-----------------	------------

Quiver superQCD from twisted SYM

First check 3d SYM \longrightarrow 2d superQCD then new 4d SYM \longrightarrow 3d superQCD

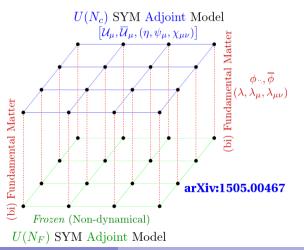
2-slice lattice SYM with $U(N) \times U(F)$ gauge group

Adj. fields on each slice

Bi-fundamental in between

Decouple U(F) slice

 \longrightarrow U(*N*) SQCD in *d* – 1 dims. with *F* fund. hypermultiplets



Recap: An exciting time for lattice supersymmetry

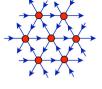
2+1 dimensions is a promising frontier for practical lattice studies of supersymmetric QFTs

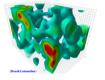
Preserving susy sub-algebra enables lattice calculations, public code available

3d maximal SYM thermodynamics consistent with holography

Work in progress on 3d Q = 8 SYM \longrightarrow superQCD

Phase diagrams, sign problems and much more for the future





Thanks for your attention!

Any further questions?

Collaborators

Simon Catterall, Joel Giedt, Raghav Jha, Angel Sherletov, Toby Wiseman

Funding and computing resources

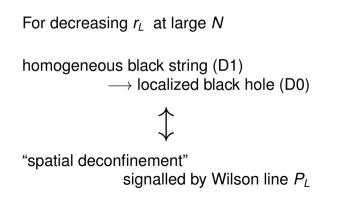
UK Research and Innovation

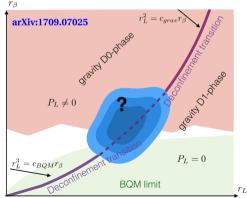
Supplement: 2d maximal SYM phase diagram

arXiv:1709.07025

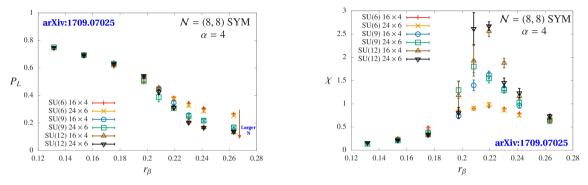
Dimensionally reduce to 2d $\mathcal{N} = (8, 8)$ SYM on $(r_L \times r_\beta)$ torus with four scalar \mathcal{Q}

Low temperatures $t = 1/r_{\beta} \iff$ black holes in dual supergravity





Spatial deconfinement transition signals

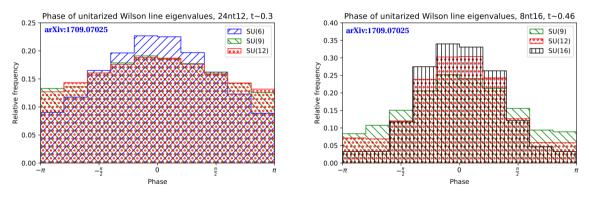


Peaks in Wilson line susceptibility match change in its magnitude |PL|, grow with size of SU(*N*) gauge group, comparing *N* = 6, 9, 12

Agreement for 16×4 vs. 24×6 lattices (aspect ratio $\alpha = r_L/r_\beta = 4$)

Check Wilson line eigenvalues

Wilson line eigenvalue phases sensitive to 'spatial deconfinement'



Left: $\alpha = 2$ distributions more uniform as *N* increases \longrightarrow D1 black string

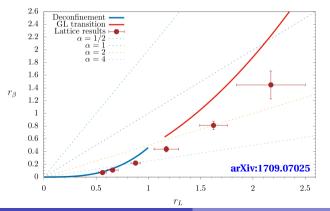
Right: $\alpha = 1/2$ distributions more compact as *N* increases \longrightarrow D0 black hole

David Schaich (Liverpool)

Lattice results for 2d $\mathcal{N} = (8, 8)$ SYM phase diagram

Good agreement with bosonic QM at high temperatures

Harder to control low-temperature uncertainties (larger N > 16 should help)



Overall consistent with holography

Comparing multiple lattice sizes and $6 \le N \le 16$

Controlled extrapolations are work in progress

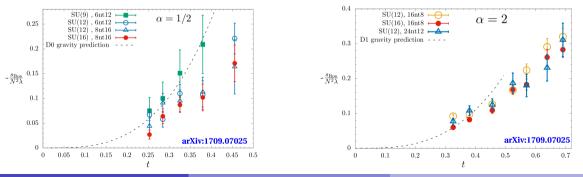
David Schaich (Liverpool)

Check holographic black hole energies

Lattice results consistent with leading expectation for sufficiently low $t \lesssim 0.4$

Similar behavior \longrightarrow difficult to distinguish phases $\propto t^{3.2}$ for small- r_l D0 phase

 $\propto t^3$ for large- r_L D1 phase



3d lattice SYM

Supplement: Sign problems

Recall typical algorithms sample field configurations Φ with probability $\frac{1}{\mathcal{Z}}e^{-S[\Phi]}$ \longrightarrow "sign problem" if action $S[\Phi]$ can be negative or complex

Lattice SYM has complex pfaffian $pf D = |pf D| e^{i\alpha}$

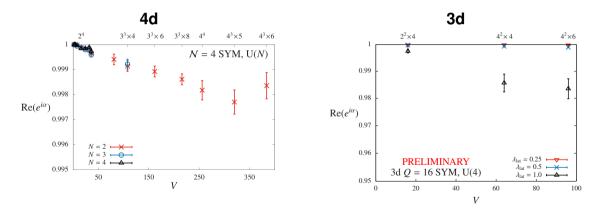
$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int [d\mathcal{U}] [d\overline{\mathcal{U}}] \mathcal{O} e^{-S_{B}[\mathcal{U},\overline{\mathcal{U}}]} \operatorname{pf} \mathcal{D}[\mathcal{U},\overline{\mathcal{U}}]$$

We phase quench $pf \mathcal{D} \longrightarrow |pf \mathcal{D}|$, need to reweight $\langle \mathcal{O} \rangle = \frac{\langle \mathcal{O} e^{i\alpha} \rangle_{pq}}{\langle e^{i\alpha} \rangle_{pq}}$

$$\Rightarrow \left\langle e^{i\alpha} \right\rangle_{pq} = \frac{\mathcal{Z}}{\mathcal{Z}_{pq}}$$
 quantifies severity of sign problem

Lattice maximal SYM sign problems

Fix $\lambda_{\text{lat}} \longrightarrow$ pfaffian nearly real positive for all accessible volumes

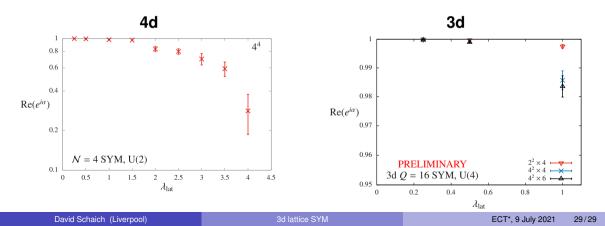


David Schaich (Liverpool)

Lattice maximal SYM sign problems

Fix volume \longrightarrow 4d signal-to-noise becomes obstruction for $\lambda_{lat} \gtrsim$ 4

3d temperatures studied so far $\iff \lambda_{lat} \leq 1$ with no problem



Backup: Breakdown of Leibniz rule on the lattice

Crucial difference between ∂ and Δ $\Delta [\phi \eta] = a^{-1} [\phi(x + a)\eta(x + a) - \phi(x)\eta(x)]$ $= [\Delta \phi] \eta + \phi \Delta \eta + a [\Delta \phi] \Delta \eta$

Full supersymmetry requires Leibniz rule $\partial [\phi \eta] = [\partial \phi] \eta + \phi \partial \eta$ only recoverd in $a \to 0$ continuum limit for any local finite difference

Backup: Breakdown of Leibniz rule on the lattice

Full supersymmetry requires Leibniz rule $\partial [\phi \eta] = [\partial \phi] \eta + \phi \partial \eta$

only recoverd in $a \rightarrow 0$ continuum limit for any local finite difference

Supersymmetry vs. locality 'no-go' theorems by Kato–Sakamoto–So [arXiv:0803.3121] and Bergner [arXiv:0909.4791]

Complicated constructions to balance locality vs. supersymmetry Non-ultralocal product operator \longrightarrow lattice Leibniz rule but not gauge invariance D'Adda–Kawamoto–Saito, arXiv:1706.02615

Cyclic Leibniz rule \longrightarrow partial lattice supersymmetry but only (0+1)d QM so far Kadoh–Kamei–So, arXiv:1904.09275

Backup: Complexified gauge field from twisting

Combining A_{μ} and $\Phi^{I} \longrightarrow A_{a}$ and \overline{A}_{a} produces $U(N) = SU(N) \otimes U(1)$ gauge theory

Complicates lattice action but needed so that $Q A_a = \psi_a$

Further motivation: Under $SO(d)_{tw} = diag[SO(d)_{euc} \otimes SO(d)_R]$

$$egin{array}{lll} {\cal A}_{\mu} &\sim \ {
m vector} \otimes {
m scalar} \,=\, {
m vector} \ {\Phi}^{
m I} &\sim \ {
m scalar} \otimes {
m vector} \,=\, {
m vector} \end{array}$$

Easiest to see in 5d (then dimensionally reduce)

$$\mathcal{A}_{a} = \mathcal{A}_{a} + i\Phi_{a} \longrightarrow (\mathcal{A}_{\mu}, \phi) + i(\Phi_{\mu}, \overline{\phi})$$

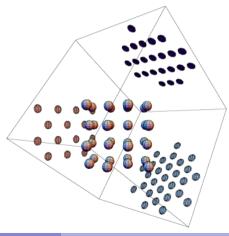
Backup: A_4^* lattice from five dimensions

Again dimensionally reduce, treating all five gauge links symmetrically

Start with hypercubic lattice in 5d momentum space

Symmetric constraint $\sum_{a} \partial_{a} = 0$ projects to 4d momentum space

 $\begin{array}{l} \mbox{Result is } A_4 \mbox{ lattice} \\ \longrightarrow \mbox{dual } A_4^* \mbox{ lattice in position space} \end{array}$



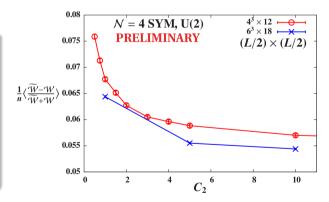
Backup: Restoration of Q_a and Q_{ab} supersymmetries

"
$$\mathcal{Q}$$
 + discrete $R_a \subset SO(4)_{tw} = \mathcal{Q}_a$ and \mathcal{Q}_{ab} "
[arXiv:1306.3891]

Test R_a on Wilson loops

$$\widetilde{\mathcal{W}}_{ab}\equiv \textit{R}_{a}\mathcal{W}_{ab}$$

Tune coeff. c_2 of d^2 term in action for fastest restoration towards continuum limit

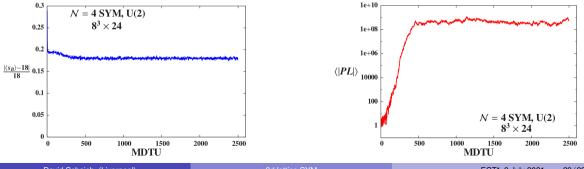


Backup: Problem with SU(N) flat directions

 $\mu^2/\lambda_{\text{lat}}$ too small $\longrightarrow \mathcal{U}_a$ can move far from continuum form $\mathbb{I}_N + \mathcal{A}_a$

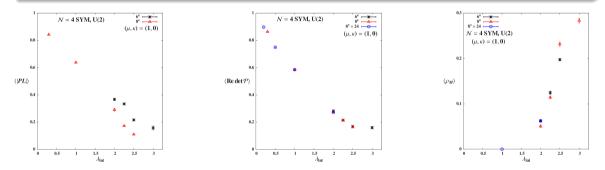
Example: $\mu = 0.2$ and $\lambda_{\text{lat}} = 2.5$ on $8^3 \times 24$ volume

Left: Bosonic action stable $\,\sim\!18\%$ off its supersymmetric value Right: (Complexified) Polyakov loop wanders off to $\,\sim\,10^9$



Backup: Problem with U(1) flat directions

Monopole condensation \longrightarrow confined lattice phase not present in continuum



Around the same $2\lambda_{lat} \approx 2...$

Left: Polyakov loop falls towards zero Center: Plaquette determinant falls towards zero Right: Density of U(1) monopole world lines becomes non-zero

Backup: Naively regulating U(1) flat directions

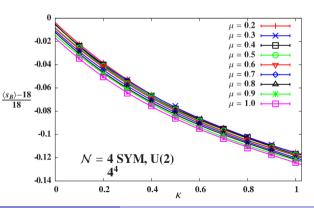
In earlier work we added another soft Q-breaking term

$$S_{\text{soft}} = \frac{N}{4\lambda_{\text{lat}}} \mu^2 \sum_{a} \left(\frac{1}{N} \text{Tr} \left[\mathcal{U}_a \overline{\mathcal{U}}_a \right] - 1 \right)^2 + \kappa \sum_{a \le b} |\text{det } \mathcal{P}_{ab} - 1|^2$$

More sensitivity to κ than to μ^2

Showing *Q* Ward identity from bosonic action

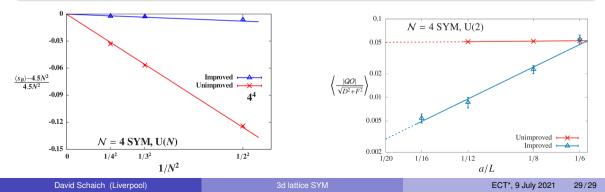
$$\langle \textit{s}_{\textit{B}}
angle = 9\textit{N}^2/2$$



Backup: Better regulating U(1) flat directions

$$S = \frac{N}{4\lambda_{\text{lat}}} \left[\mathcal{Q} \left(\chi_{ab} \mathcal{F}_{ab} + \eta \left\{ \overline{\mathcal{D}}_{a} \mathcal{U}_{a} + G \sum_{a < b} [\det \mathcal{P}_{ab} - 1] \mathbb{I}_{N} \right\} - \frac{1}{2} \eta d \right) - \frac{1}{4} \epsilon_{abcde} \chi_{ab} \overline{\mathcal{D}}_{c} \chi_{de} + \mu^{2} V \right]$$

Q Ward identity violations scale $\propto 1/N^2$ (left) and $\propto (a/L)^2$ (right) \sim effective 'O(a) improvement' since Q forbids all dim-5 operators

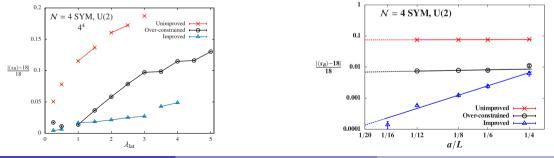


Backup: Supersymmetric moduli space modification [arXiv:1505.03135] Method to impose Q-invariant constraints on generic site operator O(n)

Modify auxiliary field equations of motion \longrightarrow moduli space

$$d(n) = \overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a(n) \longrightarrow d(n) = \overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a(n) + G\mathcal{O}(n) \mathbb{I}_N$$

Including both U(1) and SU(N) $\in O(n)$ over-constrains system



David Schaich (Liverpool)

Backup: Dimensional reduction to 2d $\mathcal{N} = (8, 8)$ SYM

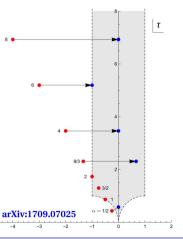
Naive for now: 4d $\mathcal{N} = 4$ SYM code with $N_x = N_y = 1$

 $A_4^* \longrightarrow A_2^*$ (triangular) lattice

Torus **skewed** depending on $\alpha = L/N_t$

Modular transformation into fundamental domain \longrightarrow some skewed tori actually rectangular

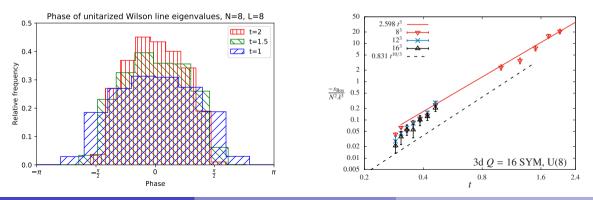
Also need to stabilize compactified links to ensure broken center symmetries



Backup: High-temperature ($t \gtrsim 1$) 3d maximal SYM

Wilson line eigenvalue phases localized rather than uniform (left)

Thermodynamics consistent with weak-coupling expectation $\propto t^3$ (right)

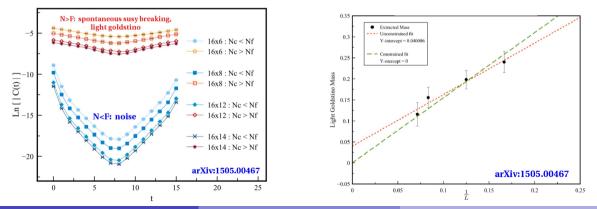


Backup: Dynamical susy breaking in 2d lattice superQCD

U(N) superQCD with F fundamental hypermultiplets

Observe spontaneous susy breaking only for N > F, as expected

Catterall–Veernala, arXiv:1505.00467



Backup: More on dynamical susy breaking

Spontaneous susy breaking means $\langle 0 | H | 0 \rangle > 0$ or equivalently $\langle \mathcal{QO} \rangle \neq 0$

Twisted superQCD auxiliary field e.o.m. \leftrightarrow Fayet–Iliopoulos D-term potential

$$\boldsymbol{d} = \overline{\mathcal{D}}_{\boldsymbol{a}} \mathcal{U}_{\boldsymbol{a}} + \sum_{i=1}^{F} \phi_{i} \overline{\phi}_{i} - \boldsymbol{r} \mathbb{I}_{\boldsymbol{N}} \qquad \longleftrightarrow \qquad \mathsf{Tr} \left[\left(\sum_{i} \phi_{i} \overline{\phi}_{i} - \boldsymbol{r} \mathbb{I}_{\boldsymbol{N}} \right)^{2} \right] \in \boldsymbol{H}$$

Have $F \times N$ scalar vevs to zero out $N \times N$ matrix $\longrightarrow N > F$ suggests susy breaking, $\langle 0 | H | 0 \rangle > 0 \iff \langle Q\eta \rangle = \langle d \rangle \neq 0$