Lattice strong dynamics for composite Higgs sectors

David Schaich

Swansea Theory Seminar, 11 June 2021

arXiv:1807.08411 arXiv:1809.02624 arXiv:2007.01810 and work in progress with the Lattice Strong Dynamics Collaboration

Overview and plan

Lattice field theory is a broadly applicable tool to study strongly coupled near-conformal theories

Composite Higgs motivation for near-conformal lattice studies

Light scalar and low-energy effective theory connection

Mass-split systems for improved control

More: S parameter, partial compositeness, ...

These slides: davidschaich.net/talks/2106Swansea.pdf

Interaction encouraged — complete coverage unnecessary

Motivation from composite Higgs sectors

Large Hadron Collider priority

Study fundamental nature of the Higgs

Composite Higgs sector can stabilize electroweak scale

New strong dynamics must differ from QCD

- —Flavour-changing neutral currents
- —Electroweak precision observables
- —SM-like Higgs boson with $M \approx 0.5 v_{\rm EW}$



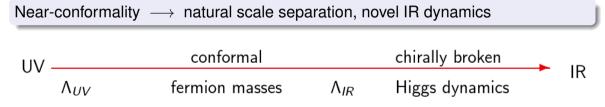
Near-conformality for composite Higgs

New strong dynamics must differ from QCD

- —Flavour-changing neutral currents
- —Electroweak precision observables
- —SM-like Higgs boson with $M \approx 0.5 v_{\rm EW}$

Near-conformal dynamics can help with all three issues

3/26



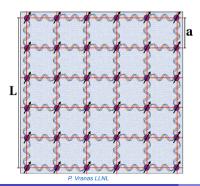
David Schaich Lattice strong dynamics Swansea, 11 June 2021

Can't rely on intuition from QCD or $\mathcal{N}=4$ SYM \longrightarrow lattice calculations

Background: Lattice field theory in a nutshell

Formally
$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]}$$

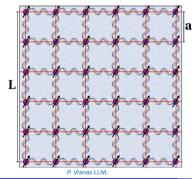
Regularize by formulating theory in finite, discrete, euclidean space-time Gauge invariant, non-perturbative, *d*-dimensional



Background: Lattice field theory in a nutshell

Formally
$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]}$$

Regularize by formulating theory in finite, discrete, euclidean space-time $^{\nwarrow}$ Gauge invariant, non-perturbative, d-dimensional



Spacing between lattice sites ("a")

 \longrightarrow UV cutoff scale 1/a

Remove cutoff: $a \to 0$ $(L/a \to \infty)$

Discrete \longrightarrow continuous symmetries \checkmark

Numerical lattice field theory calculations

High-performance computing \longrightarrow evaluate up to \sim billion-dimensional integrals (Dirac operator as $\sim 10^9 \times 10^9$ matrix)

Results to be shown, and work in progress, require state-of-the-art resources

Many thanks to USQCD-DOE, DiRAC-STFC-UKRI, and computing centres!

Lassen @Livermore

USQCD @JLab

DiRAC @Cambridge

Numerical lattice field theory algorithms

6/26

Importance sampling Monte Carlo

Algorithms sample field configurations with probability $\frac{1}{Z}e^{-S[\Phi]}$

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]} \longrightarrow \ \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}(\Phi_i) \ \text{with stat. uncertainty} \ \propto \frac{1}{\sqrt{N}}$$

Numerical lattice field theory algorithms

Importance sampling Monte Carlo

Algorithms sample field configurations with probability $\frac{1}{Z}e^{-S[\Phi]}$

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]} \longrightarrow \ \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}(\Phi_i) \ \text{with stat. uncertainty} \ \propto \frac{1}{\sqrt{N}}$$

Lattice calculation requires specific theory \longleftrightarrow lattice action $S[\Phi]$

Our strategy aims to gain generic insights into near-conformal strong dynamics

Lattice Strong Dynamics Collaboration

Argonne Xiao-Yong Jin, James Osborn

Bern Andy Gasbarro

Boston Casey Berger, Rich Brower, Evan Owen, Claudio Rebbi

Colorado Anna Hasenfratz, Ethan Neil, Curtis Peterson

UC Davis Joseph Kiskis

Livermore Dean Howarth, Pavlos Vranas

Liverpool Chris Culver, DS

Michigan Enrico Rinaldi

Nvidia Evan Weinberg

Oregon Graham Kribs

Siegen Oliver Witzel

Trieste James Ingoldby

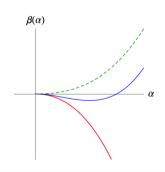
Yale Thomas Appelquist, Kimmy Cushman, George Fleming

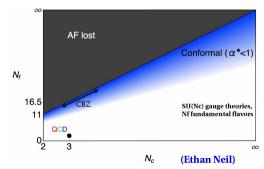
Exploring the range of possible phenomena in strongly coupled field theories

Choosing near-conformal theories to analyze for generic insights

For SU(3) gauge group, observe near-conformal strong dynamics for $8 \lesssim N_F \lesssim 10$ light fundamental fermions

Intermediate between $N_F=2$ QCD and weakly coupled Banks–Zaks IR fixed point for $N_F\simeq 16$ (massless)





From new strong dynamics to electroweak symmetry breaking

For SU(3) with N_F fundamental fermions, chiral symmetry breaking is

$$SU(N_F)_L \times SU(N_F)_R \longrightarrow SU(N_F)_V$$

Lattice studies of strong sector apply to two distinct model interpretations

1) Electroweak symmetry breaks directly

$$SU(2)_L \times U(1)_Y \subset SU(N_F)_L \times SU(N_F)_R \longrightarrow U(1)_{em} \subset SU(N_F)_V$$

2) Electroweak symmetry breaks radiatively via vacuum misalignment

$$SU(N_F)_V \supset SU(2)_L \times U(1)_Y \longrightarrow U(1)_{em}$$

From new strong dynamics to electroweak symmetry breaking

For SU(3) with N_F fundamental fermions, chiral symmetry breaking is

$$SU(N_F)_L \times SU(N_F)_R \longrightarrow SU(N_F)_V$$

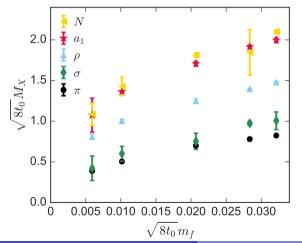
Lattice studies of strong sector apply to two distinct model interpretations

- 1) Electroweak symmetry breaks directly
 - \implies Symmetry breaking scale $F^2 = v_{\rm EW}^2 = 246 \ {\rm GeV}$
 - \implies Higgs boson as 0^{++} isosinglet scalar (' σ ')
- 2) Electroweak symmetry breaks radiatively via vacuum misalignment
 - \implies Symmetry breaking scale $F^2 = v_{\rm FW}^2/\xi$ with $\xi \lesssim 0.1$
 - \implies Higgs boson as pseudo-Goldstone (' π ')

[affected by 0⁺⁺]

10/26

Light 0⁺⁺ scalar observed, $M_{\sigma} \approx M_{\pi} \lesssim M_{\rho}/2$ qualitatively different than QCD



Improved staggered fermions

Masses in units of lattice scale $\sqrt{8t_0}$

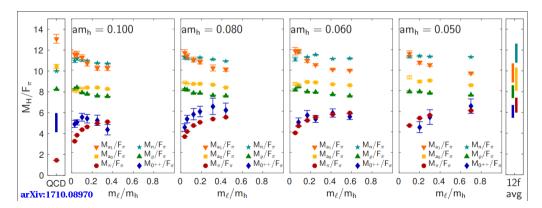
 $L \ge 5.3/(a \cdot M_{\pi}) \longrightarrow \text{up to } 64^3 \times 128$ [96³ × 192 with $a \cdot m_f = 0.00056$ in progress]

Large 0⁺⁺ uncertainties from mixing with vacuum

Recently observed by many groups considering various theories

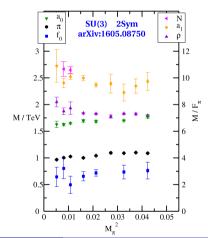
 \checkmark SU(3) with $N_F = 8$ fundamental

 \checkmark SU(3) with $N_F=12$ fundamental



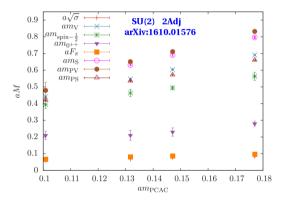
Recently observed by many groups considering various theories

- \checkmark SU(3) with N_F = 8 fundamental
- \checkmark SU(3) with $N_F = 12$ fundamental
- \checkmark SU(3) with $N_F = 2$ sextet



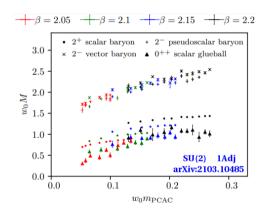
Recently observed by many groups considering various theories

- ✓ SU(3) with $N_F = 8$ fundamental
- \checkmark SU(3) with $N_F = 12$ fundamental
- \checkmark SU(3) with $N_F = 2$ sextet
- \checkmark SU(2) with $N_F = 2$ adjoint



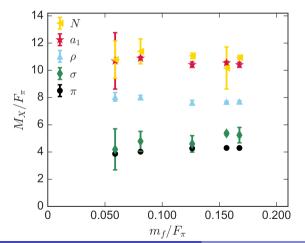
Recently observed by many groups considering various theories

- \checkmark SU(3) with $N_F = 8$ fundamental
- \checkmark SU(3) with $N_F = 12$ fundamental
- \checkmark SU(3) with $N_F = 2$ sextet
- \checkmark SU(2) with $N_F = 2$ adjoint
- \checkmark SU(2) with $N_F = 1$ adjoint



From lattice results to phenomenology — a gap to bridge

$$M_{
ho}/F_{\pi} \approx 8$$
 naively implies resonance $\sim 2~{\rm TeV}/\sqrt{\xi}$ (with broad $\Gamma_{
ho}/M_{
ho} \approx 0.2$)



This may be too naive

- 1) Need $M_\pi/F_\pi \to 0$ as $m_f \to 0$
- 2) Need exactly 3 massless pions, $\mbox{ other } \ \ N_{F}^{2}-4=60 \ \ \mbox{ stay massive}$

Need effective field theory (EFT) for chiral extrapolation

Low-energy chiral effective theories

Chiral perturbation theory (χ PT) is EFT of pions familiar from QCD

Need to extend $\chi {\rm PT}$ to incorporate light scalar,

with power-counting rules to organize interactions

Several candidate EFTs currently being explored

—Completely generic (no assumptions, many parameters)

[Soto-Talavera-Tarrus; Hansen-Langaeble-Sannino; Catà-Müller]

—Based on linear sigma model

[LSD, arXiv:1809.02624]

13/26

—Treating scalar as 'dilaton', pseudo-Goldstone of broken scale invariance

[Matsuzaki-Yamawaki; Golterman-Shamir; Appelquist-Ingoldby-Piai]

Testing low-energy EFTs

- —Completely generic (no assumptions, many parameters)
- -Based on linear sigma model
- —Treating scalar as 'dilaton', pseudo-Goldstone of broken scale invariance

Work in progress to test and compare EFTs — limited lattice results available

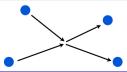
Focus on well-developed dilaton-χPT with relatively few parameters

[state of the art by Appelquist–Ingoldby–Piai, arXiv:2012.0

[state of the art by Appelquist-Ingoldby-Piai, arXiv:2012.09698]

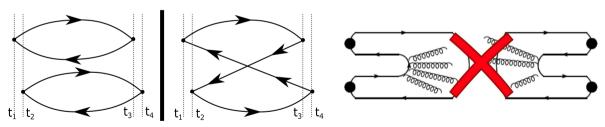
14/26

Compute more results to fit \longrightarrow two-pion elastic scattering



I = 2 s-wave pion scattering

Same-sign $\pi^{\pm}\pi^{\pm}$ scattering avoids challenging 'disconnected' contributions related to $W^{\pm}W^{\pm}$ scattering via EFTs



I = 2 s-wave pion scattering

Same-sign $\pi^{\pm}\pi^{\pm}$ scattering avoids challenging 'disconnected' contributions related to $W^{\pm}W^{\pm}$ scattering via EFTs

Well-established path from finite-volume interaction energy to low-momentum scattering length $a_{\pi\pi}$ and effective range $r_{\pi\pi}$

$$k^2 = E_{\pi\pi}^2/4 - M_{\pi}^2$$

15/26

$$\frac{1}{\pi L} \left[\sum_{\vec{\imath} \neq 0}^{\Lambda} \frac{4\pi^2}{4\pi^2 |\vec{\jmath}|^2 - k^2 L^2} - 4\pi\Lambda \right] = \frac{1}{a_{\pi\pi}} + \frac{1}{2} M_{\pi}^2 r_{\pi\pi} \left(\frac{k^2}{M_{\pi}^2} \right) + \mathcal{O}\left(\frac{k^4}{M_{\pi}^4} \right)$$

David Schaich Lattice strong dynamics Swansea, 11 June 2021

16/26

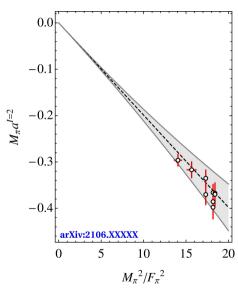
Unhappy six-param. fit to tree-level dilaton- χ PT [$\chi^2/dof = 56/18 \longrightarrow p$ -value = 10^{-5}]

Parameters suppress dilaton effects:

$$M_{\pi}a_{\pi\pi} = -rac{M_{\pi}^2}{16\pi^2F_{\pi}^2}\left[1-\mathcal{O}\left(10^{-3}
ight)rac{M_{\pi}^2}{M_{\sigma}^2}
ight]$$

Grey band estimates size of NLO effects to be considered

I = 0 scattering another future possibility



arXiv:2007.01810

Consider four light flavours (mass \widetilde{m}_{ℓ}) and six heavy flavours (mass \widetilde{m}_{h})

[switch to domain-wall fermions — better symmetries, larger costs]

In UV, effectively massless $N_F = 10 \longrightarrow \text{flow toward conformal IR fixed point}$

Around $\Lambda_{IR} \sim \widetilde{m}_h$ heavy flavours decouple

Subsequent 4-flavour symmetry breaking

arXiv:2007.01810

17/26

Consider four light flavours (mass \widetilde{m}_{ℓ}) and six heavy flavours (mass \widetilde{m}_{h})

Flow toward IR fixed point \longrightarrow bare gauge coupling $\beta = 6/g_0^2$ irrelevant

$$rac{\Lambda_{UV}}{\Lambda_{IB}}\simrac{1}{a\cdot\widetilde{m}_h}\ \longrightarrow\ a o 0$$
 continuum limit is $a\cdot\widetilde{m}_h o 0$ (with $\widetilde{m}_\ell/\widetilde{m}_h$ fixed)

Chiral limit is $\widetilde{m}_{\ell}/\widetilde{m}_h \to 0$ and then no free parameters remain

$N_F = 4 + 6$ continuum limit and hyperscaling

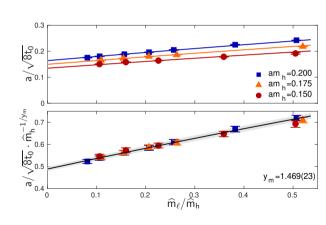
Continuum limit is $a \cdot \widetilde{m}_h \to 0$ (with $\widetilde{m}_\ell / \widetilde{m}_h$ fixed)

Lattice spacing decreases as heavy mass decreases

Obeys conformal hyperscaling relation

$$rac{a}{\sqrt{8 au_0}} = \widetilde{m}_h^{1/y_m} \Phi_a (\widetilde{m}_\ell/\widetilde{m}_h)$$

Fit quadratic ansatz for $\Phi_a(\widetilde{m}_\ell/\widetilde{m}_h)$ \longrightarrow mass anomalous dimension $\gamma_m = \gamma_m - 1 = 0.47(2)$



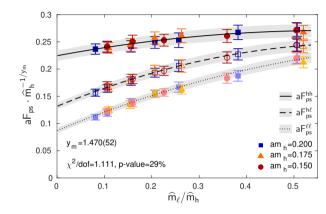
$N_F = 4 + 6$ hyperscaling and mass anomalous dimension

Spectrum also exhibits hyperscaling

Here pseudoscalar decay constants [light-light, heavy-light, heavy-heavy]

$$a \cdot F = \widetilde{m}_h^{1/y_m} \Phi_F(\widetilde{m}_\ell/\widetilde{m}_h)$$

Fit polynomial ansatz for $\Phi_F(\widetilde{m}_\ell/\widetilde{m}_h)$ \longrightarrow mass anomalous dimension $\gamma_m = y_m - 1 = 0.47(5)$



19/26

Large anomalous dim's from strong dynamics phenomenologically desirable

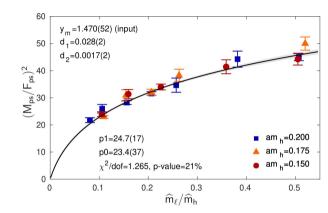
Testing dilaton- χ PT with $N_F = 4 + 6$

Dilaton- χ PT relation:

$$\frac{M_{\pi}^{2}}{F_{\pi}^{2}} = \frac{1}{y_{m}d_{1}}W_{0}\left(\frac{y_{m}d_{1}}{d_{2}}\frac{\widetilde{m}_{\ell}/\widetilde{m}_{h}}{\Phi_{a}(0)\sqrt{8t_{0}}}\right)$$

in terms of Lambert W-function

Fix y_m from hyperscaling Good fit suggests light scalar (still to be analyzed directly)



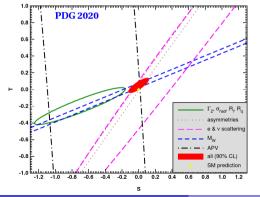
I = 2 scattering getting underway via DiRAC

Domain-wall fermions also assist S param. and partial compositeness analyses

Electroweak precision observable — the S parameter

Constrain Higgs sector from vector-minus-axial vacuum polarization $\Pi_{V-A}(Q)$

$$\gamma, Z$$
 new $Q \longrightarrow \gamma, Z$



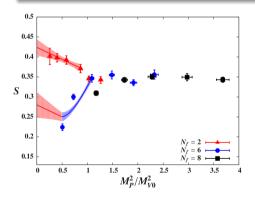
Experimental $S=-0.01\pm0.10$ vs. QCD-like $S\approx0.43\sqrt{\xi}$

Related to χ PT low-energy constant L_{10} [cf. arXiv:2010.01920]

Domain-wall fermion symmetries important

David Schaich Lattice strong dynamics Swansea, 11 June 2021 21/26

S parameter on the lattice



Prior LSD study of $N_F = 2$, 6, 8 [arXiv:1405.4752] $N_F = 4 + 6$ getting underway via DiRAC

$$S/\sqrt{\xi}=$$
 0.42(2) for $N_{F}=$ 2 matches QCD \checkmark

Significant reduction from larger N_F , chiral extrapolation again challenging

V–A vacuum polarization also contributes to Higgs potential

[arXiv:1903.02535]

Anomalous dimensions for partial compositeness

Old challenge for new strong dynamics

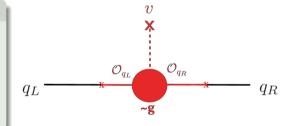
Quark & lepton masses $\sim \frac{\overline{q}q\psi\psi}{\Lambda^2}$

vs. flavour-changing NCs $\sim \frac{\overline{q}q\overline{q}q}{\Lambda_{nv}^2}$

Partial compositeness alternative Linear mixing with composite partners

$$\mathcal{L}\supset \lambda\overline{q}\mathcal{O}_q+\mathsf{h.c.}$$

$$\longrightarrow m_q \sim \textit{v}_{\mathrm{EW}} \left(rac{\mathsf{TeV}}{\Lambda_{\textit{UV}}}
ight)^{4-2\gamma_q}$$



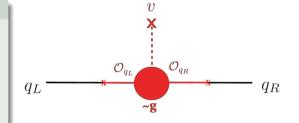
23/26

Large mass hierarchy \longleftrightarrow $\mathcal{O}(1)$ anomalous dimensions

Anomalous dimensions for partial compositeness

Partial compositeness alternative Linear mixing with composite partners

$$\mathcal{L} \supset \lambda \overline{q} \mathcal{O}_q + ext{h.c.} \ \longrightarrow m_q \sim extstyle v_{ ext{EW}} \left(rac{ extst{TeV}}{ extstyle extsty$$



23/26

Large mass hierarchy \longleftrightarrow $\mathcal{O}(1)$ anomalous dimensions

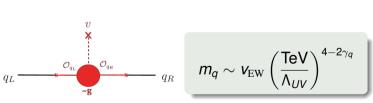
Example: $\Lambda_{UV}=10^{10}~{\rm TeV}~\longrightarrow~m_q\sim {\cal O}({\rm MeV})~{\rm from}~\gamma_q\approx 1.75$ $m_q\sim {\cal O}({\rm GeV})~{\rm from}~\gamma_q\approx 1.9$

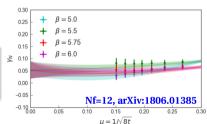
Plans for partial compositeness on the lattice

For SU(3) theories $\mathcal{O}_q \sim \psi \psi \psi \sim$ baryons with scaling dim. $[\mathcal{O}_q] = \frac{9}{2} - \gamma_q$

Plan
$$N_F = 4 + 6$$
 predictions $\gamma_q = -\frac{d \log Z_{\mathcal{O}_q}(\mu)}{d \log \mu}$ from RI/MOM non-pert. renorm.

and from ratios of gradient-flowed operators $\propto t^{\gamma_q/2}$ [arXiv:1806.01385]





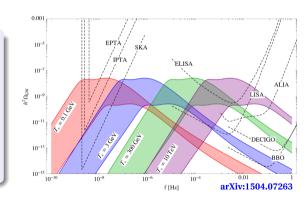
Gravitational waves from early-universe phase transition

First-order confinement transition \longrightarrow stochastic background of grav. waves

Massless $N_F = 4$ transition is first-order

Work in progress to map $N_F = 4 + 6$ phase diagram

Then compute properties of transition: latent heat, nucleation rate, etc.



Swansea, 11 June 2021

Recap and outlook

Lattice field theory is a broadly applicable tool to study strongly coupled near-conformal theories

Near-conformality useful for new strong dynamics

- —Light scalar observed, so far consistent with dilaton- χ PT
- —Reduced S parameter
- -Natural scale separation for flavour physics

Ongoing investigations of mass-split $N_F = 4 + 6$ system

- —S parameter and I = 2 scattering
- —Baryon scaling dimensions for partial compositeness
- —Finite-temperature transitions → gravitational waves

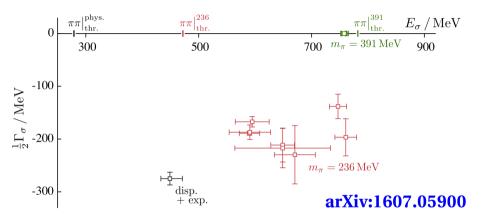
Thanks for your attention!

Any further questions?

Funding and computing resources

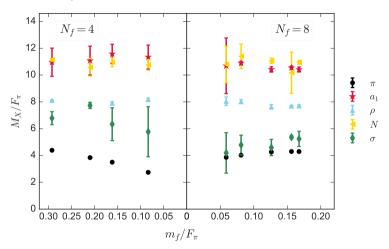
UK Research and Innovation

Backup: Singlet scalar in QCD spectrum



In lattice QCD, isosinglet scalar mass $M_S \gtrsim 2M_P$ \longrightarrow significant mixing with I=0 two-pion scattering states

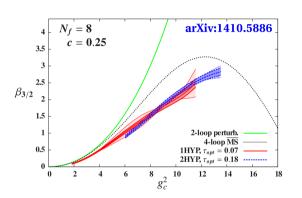
Backup: Direct comparison of QCD-like and near-conformal 0⁺⁺

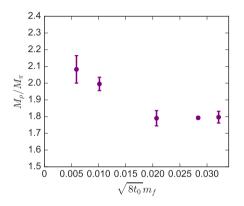


 $N_F=8$ scalar much lighter than $M_\sigma \approx M_\pi/2$ for QCD-like $N_F=4$

David Schaich Lattice strong dynamics Swansea, 11 June 2021 26/26

Backup: $N_F = 8$ spontaneous chiral symmetry breaking

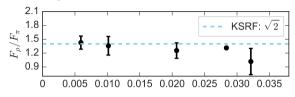


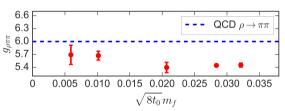


26/26

Monotonic step-scaling $(\sim -\beta)$ function and increasing M_{ρ}/M_{π} are evidence against conformal IR fixed point

Backup: Width of $N_F = 8$ vector resonance





$$F_
ho = \sqrt{2} F_\pi \qquad \qquad g_{
ho\pi\pi} = rac{ extbf{ extit{M}}_
ho}{\sqrt{2} F_\pi}$$

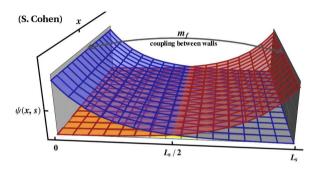
Kawarabayashi-Suzuki, 1966 Riazuddin-Fayyazuddin, 1966

Can derive from current algebra, hidden local symetry, chiral EFT

Confirm first KSRF relation, then apply second

$$\longrightarrow$$
 vector width $\ \Gamma_
ho=rac{g_{
ho\pi\pi}^2M_
ho}{48\pi}\simeq 450\ {
m GeV}/\sqrt{\xi}\$ — hard to see at LHC

Backup: Domain-wall fermions

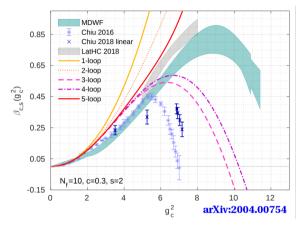


 L_s copies of 4d gauge fields (expensive with $L_s = 16!$)

Localized fermions have renormalized mass $m=m_f+m_{res}$ with residual mass $m_{res}\ll m_f$ from overlap around $L_s/2$

 $L_s \to \infty \longrightarrow \text{exact chiral symmetry at non-zero lattice spacing}$

Backup: $N_F = 10$ step-scaling function (SSF)



Lattice calculations use finite-volume gradient flow schemes parameterized by c (here c=0.3)

Evidence for conformal IR fixed point at strong $g_c^2 \sim 13$ in c = 0.3 scheme

 $\beta_2=0$ for $g_c^2\approx 11$ in c=0.25 scheme, with larger systematic uncertainties