Maximally supersymmetric Yang–Mills on the lattice

David Schaich (Liverpool)

Southampton String Theory Seminar, 27 November 2019

and more to come with Simon Catterall, Raghav Jha and Toby Wiseman
Overview and plan

Why: Lattice supersymmetry

How: Lattice formulation highlights

What: Recent results
 - Dimensionally reduced (2d) thermodynamics
 - Static potential (4d)
 - Conformal scaling dimensions

Prospects and future directions
Overview and plan

Central idea
Preserve (some) susy in discrete space-time
→ practical lattice investigations

Goals
1) Reproduce reliable results in perturbative and holographic regimes
2) Access new domains
Motivations

Lattice field theory promises first-principles predictions for strongly coupled supersymmetric QFTs

BSM

QFT

Holography

(Derek Leinweber)
Supersymmetry must be broken on the lattice

Supersymmetry is a space-time symmetry, \((\mathcal{I} = 1, \cdots, \mathcal{N})\)

adding spinor generators \(Q^I_\alpha\) and \(\bar{Q}^I_{\dot{\alpha}}\) to translations, rotations, boosts

\[
\{Q^I_\alpha, \bar{Q}^J_{\dot{\alpha}}\} = 2\delta^{IJ}\sigma^{\mu}_{\alpha\dot{\alpha}} P_\mu
\]

broken in discrete space-time

\[\longrightarrow\] relevant susy-violating operators

Scalar mass Yukawas Quartics Quark mass Gluino mass
Supersymmetry need not be *completely* broken on the lattice

Preserve susy sub-algebra at non-zero lattice spacing

\[\implies \text{correct continuum limit with little or no fine tuning} \]

Equivalent constructions from ‘topological’ twisting and dim’l deconstruction

Need \(2^d\) supersymmetries in \(d\) dimensions

\(d = 4 \implies\) maximally supersymmetric Yang–Mills (\(\mathcal{N} = 4\) SYM)
\[\mathcal{N} = 4 \text{ SYM in a nutshell} \]

Arguably simplest non-trivial 4d QFT \(\rightarrow \) dualities, amplitudes, \ldots

SU(4) gauge theory with \(\mathcal{N} = 4 \) fermions \(\Psi^I \) and 6 scalars \(\Phi^{IJ} \), all massless and in adjoint rep.

Symmetries relate coefficients of kinetic, Yukawa and \(\Phi^4 \) terms

Maximal 16 supersymmetries \(Q^I_\alpha \) and \(\overline{Q}^I_\dot{\alpha} \) \(I = 1, \ldots, 4 \)
transform under global \(SU(4) \sim SO(6) \) \(R \) symmetry

Conformal \(\rightarrow \) \(\beta \) function is zero for all values of \(\lambda = g^2 N \)
Twisting $\mathcal{N} = 4$ SYM

Intuitive picture — expand 4×4 matrix of supersymmetries

\[
\begin{pmatrix}
Q^1_{\alpha} & Q^2_{\alpha} & Q^3_{\alpha} & Q^4_{\alpha} \\
\bar{Q}^1_{\dot{\alpha}} & \bar{Q}^2_{\dot{\alpha}} & \bar{Q}^3_{\dot{\alpha}} & \bar{Q}^4_{\dot{\alpha}}
\end{pmatrix}
= Q + Q_\mu \gamma_\mu + Q_{\mu \nu} \gamma_\mu \gamma_\nu + \bar{Q}_\mu \gamma_\mu \gamma_5 + \bar{Q} \gamma_5
\]

\[
\rightarrow Q + Q_a \gamma_a + Q_{ab} \gamma_a \gamma_b
\]

with $a, b = 1, \cdots, 5$

R-symmetry index \times Lorentz index \rightarrow reps of ‘twisted rotation group’

\[
SO(4)_{tw} \equiv \text{diag} \left[SO(4)_{\text{euc}} \otimes SO(4)_R \right]
\]

$SO(4)_R \subset SO(6)_R$

Change of variables $\rightarrow Q$ transform with integer ‘spin’ under $SO(4)_{tw}$
Twisting $\mathcal{N} = 4$ SYM

Intuitive picture — expand 4×4 matrix of supersymmetries

$$
\begin{pmatrix}
Q^1_\alpha & Q^2_\alpha & Q^3_\alpha & Q^4_\alpha \\
Q^1_{\dot{\alpha}} & Q^2_{\dot{\alpha}} & Q^3_{\dot{\alpha}} & Q^4_{\dot{\alpha}}
\end{pmatrix}
= Q + Q_\mu \gamma_\mu + Q_{\mu\nu} \gamma_\mu \gamma_\nu + \overline{Q}_\mu \gamma_\mu \gamma_5 + \overline{Q} \gamma_5
\rightarrow Q + Q_a \gamma_a + Q_{ab} \gamma_a \gamma_b
$$

with $a, b = 1, \cdots, 5$

Discrete space-time
Can preserve closed sub-algebra

$$\{ Q, Q \} = 2Q^2 = 0$$
Twisting $\mathcal{N} = 4$ SYM

Intuitive picture — expand 4×4 matrix of supersymmetries

\[
\begin{pmatrix}
Q^1_\alpha & Q^2_\alpha & Q^3_\alpha & Q^4_\alpha \\
\bar{Q}^1_{\dot{\alpha}} & \bar{Q}^2_{\dot{\alpha}} & \bar{Q}^3_{\dot{\alpha}} & \bar{Q}^4_{\dot{\alpha}}
\end{pmatrix}
= Q + Q_\mu \gamma_\mu + Q_{\mu \nu} \gamma_\mu \gamma_\nu + \bar{Q}_\mu \gamma_\mu \gamma_5 + \bar{\gamma} \gamma_5
\rightarrow Q + Q_a \gamma_a + Q_{ab} \gamma_a \gamma_b
\text{ with } a, b = 1, \cdots, 5
\]

Discrete space-time
Can preserve closed sub-algebra
\[
\{ Q, Q \} = 2Q^2 = 0
\]
Completing the twist

Fields also transform with integer spin under SO(4)\text{tw} — no spinors

\[
\begin{align*}
\psi \text{ and } \bar{\psi} & \rightarrow \eta, \psi_a \text{ and } \chi_{ab} \\
A_\mu \text{ and } \Phi^I & \rightarrow \text{complexified gauge field } A_a \text{ and } \bar{A}_a \\
& \rightarrow U(N) = SU(N) \otimes U(1) \text{ gauge theory}
\end{align*}
\]

\[Q\text{ interchanges bosonic } \leftrightarrow \text{fermionic d.o.f. with } Q^2 = 0\]

\[
\begin{align*}
Q A_a &= \psi_a \\
Q \chi_{ab} &= -\bar{F}_{ab} \\
Q \eta &= d
\end{align*}
\]

bosonic auxiliary field with e.o.m. \[d = \bar{D}_a A_a\]
Lattice theory looks nearly the same despite breaking Q_a and Q_{ab}

Covariant derivatives \rightarrow finite difference operators

Complexified gauge fields A_a \rightarrow gauge links $U_a \in gl(N, \mathbb{C})$

$Q A_a \rightarrow Q U_a = \psi_a$

$Q \chi_{ab} = -\bar{F}_{ab}$

$Q \eta = d$

Geometry: η on sites, ψ_a on links, etc.

Supersymmetric lattice action ($QS = 0$) from $Q^2 \cdot = 0$ and Bianchi identity

$$S = \frac{N}{4\lambda_{lat}} \text{Tr} \left[Q \left(\chi_{ab} F_{ab} + \eta \bar{D}_a U_a - \frac{1}{2} \eta d \right) - \frac{1}{4} \epsilon_{abcde} \chi_{ab} \bar{D}_c \chi_{de} \right]$$
Five links in four dimensions \rightarrow A_4^* lattice

$A_4^* \sim$ 4d analog of 2d triangular lattice

Basis vectors linearly dependent and non-orthogonal

Large S_5 point group symmetry

S_5 irreps precisely match onto irreps of twisted SO(4)$_{tw}$

$\psi_a \rightarrow \psi_\mu$, $\bar{\eta}$ is $5 \rightarrow 4 \oplus 1$

$\chi_{ab} \rightarrow \chi_{\mu\nu}$, $\bar{\psi}_\mu$ is $10 \rightarrow 6 \oplus 4$

$S_5 \rightarrow$ SO(4)$_{tw}$ in continuum limit restores Q_a and Q_{ab}
Checkpoint

Analytic results for twisted $\mathcal{N} = 4$ SYM on A_4^* lattice

$U(N)$ gauge invariance + Q + S_5 lattice symmetries

\rightarrow Moduli space preserved to all orders

\rightarrow One-loop lattice β function vanishes

\rightarrow Only one log. tuning to recover continuum Q_a and Q_{ab}

Not yet suitable for numerical calculations

Must regulate zero modes and flat directions, especially in U(1) sector
Two deformations stabilize lattice calculations

(i) Add $\text{SU}(N)$ scalar potential $\propto \mu^2 \sum_a \left(\text{Tr} \left[U_a \bar{U}_a \right] - N \right)^2$

Softly breaks susy \longrightarrow Q-violating operators vanish $\propto \mu^2 \rightarrow 0$

Test via Ward identity violations

$Q \left[\eta U_a \bar{U}_a \right] \neq 0$

\[\left\langle \frac{|QO|}{\sqrt{D^2 + F^2}} \right\rangle \]
Two deformations stabilize lattice calculations

(ii) Constrain $U(1)$ plaquette determinant $\sim G \sum_{a<b} (\det P_{ab} - 1)$

Implemented supersymmetrically as Fayet–Iliopoulos D-term potential

Test via Ward identity violations

$Q \left[\eta U_a \bar{U}_a \right] \neq 0$

Log–log axes

$\rightarrow \text{violations} \propto (a/L)^2$
so that the full improved action becomes

\[S_{\text{imp}} = S'_{\text{exact}} + S_{\text{closed}} + S'_{\text{soft}} \] \hspace{1cm} (18)\]

\[S'_{\text{exact}} = \frac{N}{4\lambda_{\text{lat}}} \sum_n \text{Tr} \left[-F_{ab}(n)F_{ab}(n) - \chi_{ab}(n)D_{[a}^{(+)}\psi_{b]}(n) - \eta(n)D_{a}^{(-)}\psi_{a}(n) \right. \]

\[+ \frac{1}{2} \left(\overline{D}_{a}^{(-)}U_{a}(n) + G \sum_{a \neq b} (\det P_{ab}(n) - 1) \mathbb{I}_{N} \right)^{2} \left. - S_{\text{det}} \right] \]

\[S_{\text{det}} = \frac{N}{4\lambda_{\text{lat}}} G \sum_n \text{Tr} [\eta(n)] \sum_{a \neq b} [\det P_{ab}(n)] \text{Tr} \left[U_{b}^{-1}(n)\psi_{b}(n) + U_{a}^{-1}(n + \hat{\mu}_{b})\psi_{a}(n + \hat{\mu}_{b}) \right] \]

\[S_{\text{closed}} = -\frac{N}{16\lambda_{\text{lat}}} \sum_n \text{Tr} \left[\epsilon_{abcde} \chi_{de}(n + \hat{\mu}_{a} + \hat{\mu}_{b} + \hat{\mu}_{c})\overline{D}_{c}^{(-)}\chi_{ab}(n) \right], \]

\[S'_{\text{soft}} = \frac{N}{4\lambda_{\text{lat}}} \mu^{2} \sum_n \sum_{a} \left(\frac{1}{N} \text{Tr} \left[U_{a}(n)\overline{U}_{a}(n) \right] - 1 \right)^{2} \]

\[\gtrsim 100 \text{ inter-node data transfers in the fermion operator} \quad \text{— non-trivial} \ldots \]

Public parallel code to reduce barriers to entry: github.com/daschaich/susy

(i) Thermodynamics on \((r_L \times r_\beta)\) 2-torus

Dimensionally reduce to (deconfined) 2d \(\mathcal{N} = (8, 8)\) SYM with four scalar \(Q\)

Low temperatures \(t = 1/r_\beta \leftrightarrow\) black holes in dual supergravity

For decreasing \(r_L\) \textbf{at large} \(N\)

homogeneous black string (D1)

\(\longrightarrow\) localized black hole (D0)

“spatial deconfinement”

signalled by Wilson line \(P_L\)
Spatial deconfinement transition signals

Peaks in Wilson line susceptibility match change in its magnitude $|\text{PL}|$, grow with size of SU(N) gauge group, comparing $N = 6, 9, 12$

Agreement for 16×4 vs. 24×6 lattices (aspect ratio $\alpha = r_L/r_\beta = 4$)

\[\text{arXiv:1709.07025} \]
Lattice $2d \mathcal{N} = (8, 8)$ SYM phase diagram

Large $\alpha = r_L/r_\beta \gtrsim 4 \rightarrow$ good agreement with high-temperature bosonic QM

Small $\alpha \lesssim 2 \rightarrow$ harder to control uncertainties with $6 \leq N \leq 16$

Overall consistent with holography

Comparing multiple lattice sizes

Controlled extrapolations are work in progress
Dual black hole thermodynamics

Dual black hole energy from 2d $\mathcal{N} = (8,8)$ SYM

$\propto t^3$ for large-r_L D1 phase

$\propto t^{3.2}$ for small-r_L D0 phase

Lattice results consistent with holography for sufficiently low $t \lesssim 0.4$

\begin{align*}
\alpha = 2 & \quad \text{SU(12), 16nt8} \quad \text{SU(16), 16nt8} \quad \text{SU(12), 24nt12} \\
\alpha = 1/2 & \quad \text{SU(9), 6nt12} \quad \text{SU(12), 6nt12} \quad \text{SU(12), 8nt16} \quad \text{SU(16), 8nt16}
\end{align*}

\text{D1 gravity prediction} \quad \text{D0 gravity prediction}
(ii) $4d$ $\mathcal{N} = 4$ SYM static potential $V(r)$

Static probes $\rightarrow r \times T$ Wilson loops $W(r, T) \propto e^{-V(r)T}$

Coulomb gauge trick reduces A_4^* lattice complications
Static potential is Coulombic at all λ

Fits to confining $V(r) = A - C/r + \sigma r \rightarrow$ vanishing string tension σ

\Rightarrow Fit to just $V(r) = A - C/r$

to extract Coulomb coefficient $C(\lambda)$

Discretization artifacts reduced by tree-level improved analysis
Coupling dependence of Coulomb coefficient

Continuum perturbation theory $\rightarrow C(\lambda) = \lambda/(4\pi) + O(\lambda^2)$

Holography $\rightarrow C(\lambda) \propto \sqrt{\lambda}$ for $N \to \infty$ and $\lambda \to \infty$ with $\lambda \ll N$

For $\lambda_{\text{lat}} \leq 2$, consistent with leading-order perturbation theory
(iii) Konishi operator scaling dimension

\[\mathcal{O}_K(x) = \sum_i \text{Tr} [\Phi^I(x)\Phi^I(x)] \] is simplest conformal primary operator

Scaling dimension \(\Delta_K(\lambda) = 2 + \gamma_K(\lambda) \) investigated through perturbation theory (& S duality), holography, conformal bootstrap

\[C_K(r) \equiv \mathcal{O}_K(x + r)\mathcal{O}_K(x) \propto r^{-2\Delta_K} \]

‘SUGRA’ is 20’ op., \(\Delta_S = 2 \)

Will compare:
- Direct power-law decay
- Finite-size scaling
- Monte Carlo RG
(iii) Konishi operator scaling dimension

Lattice scalars $\varphi(n)$ from polar decomposition $U_a(n) \rightarrow e^{\varphi_a(n)} U_a(n)$

$$O_{\text{lat}}^K(n) = \sum_a \text{Tr}[\varphi_a(n)\varphi_a(n)] - \text{vev}$$

$$O_{\text{lat}}^S(n) \sim \text{Tr}[\varphi_a(n)\varphi_b(n)]$$

$$C_K(r) \equiv O_K(x + r)O_K(x) \propto r^{-2\Delta_K}$$

‘SUGRA’ is 20’ op., $\Delta_S = 2$

Will compare:
- Direct power-law decay
- Finite-size scaling
- Monte Carlo RG
Scaling dimensions from MCRG stability matrix

Lattice system: \(H = \sum_i c_i \mathcal{O}_i \) (infinite sum)

Couplings flow under RG blocking \(\longrightarrow \) \(H^{(n)} = R_b H^{(n-1)} = \sum_i c_i^{(n)} \mathcal{O}_i^{(n)} \)

Fixed point \(\longrightarrow \) \(H^* = R_b H^* \) with couplings \(c_i^* \)

Linear expansion around fixed point \(\longrightarrow \) stability matrix \(T_{ik}^* \)

\[
 c_i^{(n)} - c_i^* = \sum_k \frac{\partial c_i^{(n)}}{\partial c_k^{(n-1)}} \bigg|_{H^*} \left(c_k^{(n-1)} - c_k^* \right) \equiv \sum_k T_{ik}^* \left(c_k^{(n-1)} - c_k^* \right)
\]

Correlators of \(\mathcal{O}_i, \mathcal{O}_k \) \(\longrightarrow \) elements of stability matrix [Swendsen, 1979]

Eigenvalues of \(T_{ik}^* \) \(\longrightarrow \) scaling dimensions of corresponding operators
Preliminary Δ_K results from Monte Carlo RG

Analyzing both $\mathcal{O}_{K}^{\text{lat}}$ and $\mathcal{O}_{S}^{\text{lat}}$

Imposing protected $\Delta_S = 2$

$\rightarrow \Delta_K(\lambda)$ looks perturbative

Systematic uncertainties from different amounts of smearing

Complication from twisting $\text{SO}(4)_R \subset \text{SO}(6)_R$

$\mathcal{O}_{K}^{\text{lat}}$ mixes with $\text{SO}(4)_R$-singlet part of $\text{SO}(6)_R$-nonsinglet \mathcal{O}_S

\rightarrow disentangle via variational analyses
Future: Pushing $\mathcal{N} = 4$ SYM to stronger coupling

✓ Reproduce reliable 4d results in perturbative regime

→ Check holographic predictions and access new domains

Sign problem seems to become obstruction

\[
\langle \mathcal{O} \rangle = \frac{1}{Z} \int [dU][d\bar{U}] \mathcal{O} \ e^{-S_{B[U,\bar{U}]} \ pf D[U,\bar{U}]}
\]

Complex pfaffian \(pf D = |pf D| e^{i\alpha} \) complicates importance sampling

We phase quench, \(pf D \longrightarrow |pf D| \), need to reweight \(\langle \mathcal{O} \rangle = \frac{\langle \mathcal{O} e^{i\alpha} \rangle_{pq}}{\langle e^{i\alpha} \rangle_{pq}} \)
$N = 4$ SYM sign problem

Fix $\lambda_{\text{lat}} = g_{\text{lat}}^2 N = 0.5$

Pfaffian nearly real positive
for all accessible volumes

Fix 4^4 volume

Fluctuations increase with coupling

Signal-to-noise becomes obstruction for $\lambda_{\text{lat}} \gtrsim 4$
Preserve twisted supersymmetry sub-algebra in 2d or 3d

2-slice lattice SYM
with $U(N) \times U(F)$ gauge group
Adj. fields on each slice
Bi-fundamental in between

Decouple $U(F)$ slice
$\rightarrow U(N)$ SQCD in $d - 1$ dims.
with F fund. hypermultiplets

$U(N_c)$ SYM Adjoint Model

$[U_\mu, \bar{U}_\mu, (\eta, \psi_\mu, \chi_{\mu\nu})]$

Frozen (Non-dynamical)

$U(N_F)$ SYM Adjoint Model

$arXiv:1505.00467$
Dynamical susy breaking in 2d lattice superQCD

U(N) superQCD with F fundamental hypermultiplets

Spontaneous susy breaking requires $N > F$

Graphs:
- **Left graph:**
 - Title: $N > F$: spontaneous susy breaking, light goldstino
 - $\ln |C(t)|$ vs. time t for different lattices:
 - $16x6$: $N_c < N_f$
 - $16x6$: $N_c > N_f$
 - $16x8$: $N_c < N_f$
 - $16x8$: $N_c > N_f$
 - $16x12$: $N_c < N_f$
 - $16x12$: $N_c > N_f$
 - $16x14$: $N_c < N_f$
 - $16x14$: $N_c > N_f$
 - **Note:** arXiv:1505.00467

- **Right graph:**
 - Title: Extracted Mass
 - Y-intercept = 0.040006
 - $\frac{1}{L}$ vs. Light Goldstino Mass
 - **Note:** arXiv:1505.00467
Recap: An exciting time for lattice supersymmetry

✓ Preserve (some) susy in discrete space-time
 \[\rightarrow \text{practical lattice } \mathcal{N} = 4 \text{ SYM, public code available} \]

Reproduce reliable analytic results

✓ 2d \(\mathcal{N} = (8,8) \) SYM thermodynamics consistent with holography
✓ Perturbative static potential Coulomb coefficient \(C(\lambda) \)
 and Konishi operator conformal scaling dimension \(\Delta_K(\lambda) \)

Access new domains \[\rightarrow \text{sign problem, lower-dim’l superQCD and more…} \]
Thank you!

Collaborators
Simon Catterall, Raghav Jha, Toby Wiseman
also Georg Bergner, Poul Damgaard, Joel Giedt, Anosh Joseph

Funding and computing resources
Backup: Lattice field theory in a nutshell

Formally \(\langle O \rangle = \frac{1}{Z} \int D\Phi \ O(\Phi) \ e^{-S[\Phi]} \)

Regularize by formulating theory in finite, discrete space-time \(\rightarrow \) the lattice

Spacing between lattice sites ("a") \(\rightarrow \) UV cutoff scale \(1/a \)

Remove cutoff: \(a \rightarrow 0 \ (L/a \rightarrow \infty) \)

Hypercubic \(\rightarrow \) automatic symmetries
Importance sampling Monte Carlo

Algorithms sample field configurations with probability $\frac{1}{\mathcal{Z}} e^{-S[\Phi]}$

$$\langle O \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\Phi \ O(\Phi) \ e^{-S[\Phi]} \quad \rightarrow \quad \frac{1}{N} \sum_{i=1}^{N} O(\Phi_i) \text{ with stat. uncertainty } \propto \frac{1}{\sqrt{N}}$$
Backup: Breakdown of Leibniz rule on the lattice

\[\left\{ Q_\alpha, \overline{Q}_{\dot{\alpha}} \right\} = 2\sigma_{\alpha\dot{\alpha}}^\mu P_\mu = 2i\sigma_{\alpha\dot{\alpha}}^\mu \partial_\mu \] is problematic

\[\implies \text{try finite difference} \quad \partial \phi(x) \longrightarrow \Delta \phi(x) = \frac{1}{a} [\phi(x + a) - \phi(x)] \]

Crucial difference between \(\partial \) and \(\Delta \)

\[\Delta [\phi \eta] = a^{-1} [\phi(x + a)\eta(x + a) - \phi(x)\eta(x)] \]

\[= [\Delta \phi] \eta + \phi \Delta \eta + a [\Delta \phi] \Delta \eta \]

Full supersymmetry requires Leibniz rule \(\partial [\phi \eta] = [\partial \phi] \eta + \phi \partial \eta \)

only recoverd in \(a \to 0 \) continuum limit for any local finite difference
Backup: Complexified gauge field from twisting

Combining A_μ and $\Phi^I \longrightarrow A_a$ and \bar{A}_a

produces $U(N) = SU(N) \otimes U(1)$ gauge theory

Complicates lattice action but needed so that $Q A_a = \psi_a$

Further motivation: Under $SO(d)_{tw} = \text{diag}[SO(d)_{\text{euc}} \otimes SO(d)_R]$

$A_\mu \sim \text{vector} \otimes \text{scalar} = \text{vector}$

$\Phi^I \sim \text{scalar} \otimes \text{vector} = \text{vector}$

Easiest to see in 5d (then dimensionally reduce)

$A_a = A_a + i\Phi_a \longrightarrow (A_\mu, \phi) + i(\Phi_\mu, \bar{\phi})$
Backup: A_4^* lattice from five dimensions

Again dimensionally reduce, treating all five gauge links symmetrically

Start with hypercubic lattice in 5d momentum space

Symmetric constraint $\sum_a \partial_a = 0$

projects to 4d momentum space

Result is A_4 lattice

\rightarrow dual A_4^* lattice in real space
Backup: Restoration of Q_a and Q_{ab} supersymmetries

“$Q + \text{discrete } R_a \subset SO(4)_{tw} = Q_a \text{ and } Q_{ab}$”

Test R_a on Wilson loops $\tilde{\mathcal{W}}_{ab} \equiv R_a \mathcal{W}_{ab}$

Tune coeff. c_2 of d^2 term to ensure restoration in continuum
Backup: Problem with SU(N) flat directions

$\mu^2/\lambda_{\text{lat}}$ too small $\rightarrow \mathcal{U}_a$ can move far from continuum form $\mathbb{I}_N + \mathcal{A}_a$

Example: $\mu = 0.2$ and $\lambda_{\text{lat}} = 2.5$ on $8^3 \times 24$ volume

Left: Bosonic action stable $\sim 18\%$ off its supersymmetric value

Right: (Complexified) Polyakov loop wanders off to $\sim 10^9$
Backup: Problem with U(1) flat directions

Monopole condensation \rightarrow confined lattice phase not present in continuum

Around the same $2\lambda_{\text{lat}} \approx 2.\ldots$

Left: Polyakov loop falls towards zero

Center: Plaquette determinant falls towards zero

Right: Density of U(1) monopole world lines becomes non-zero
Backup: Regulating SU(N) flat directions

Add soft Q-breaking scalar potential to lattice action

$$S = \frac{N}{4 \lambda_{\text{lat}}} \left[Q \left(\chi_{ab} F_{ab} + \eta \overline{D}_a U_a - \frac{1}{2} \eta d \right) - \frac{1}{4} \epsilon_{abcde} \chi_{ab} \overline{D}_c \chi_{de} + \mu^2 V \right]$$

$$V = \sum_a \left(\frac{1}{N} \text{Tr} [U_a \overline{U}_a] - 1 \right)^2$$ lifts SU(N) flat directions,

ensures $U_a = I_N + A_a$ in continuum limit

Correct continuum limit requires $\mu^2 \rightarrow 0$ to restore Q and recover moduli space

Typically scale $\mu \propto 1/L$ in $L \rightarrow \infty$ continuum extrapolation
Backup: Poorly regulating U(1) flat directions

In earlier work we added another soft Q-breaking term

$$S_{\text{soft}} = \frac{N}{4\lambda_{\text{lat}}} \mu^2 \sum_a \left(\frac{1}{N} \text{Tr} \left[U_a \overline{U}_a \right] - 1 \right)^2 + \kappa \sum_{a < b} |\det P_{ab} - 1|^2$$

More sensitivity to κ than to μ^2

Showing Q Ward identity from bosonic action

$$\langle s_B \rangle = \frac{9N^2}{2}$$
Backup: Better regulating $\text{U}(1)$ flat directions

$$S = \frac{N}{4\lambda_{\text{lat}}} \left[Q \left(\chi_{ab} F_{ab} + \eta \left\{ \overline{D}_a U_a + G \sum_{a<b} [\det P_{ab} - 1] \mathbb{I}_N \right\} - \frac{1}{2} \eta d \right) - \frac{1}{4} \epsilon_{abcde} \chi_{ab} \overline{D}_c \chi_{de} + \mu^2 V \right]$$

Q Ward identity violations scale $\propto 1/N^2$ (left) and $\propto (a/L)^2$ (right)

\sim effective ‘$O(a)$ improvement’ since Q forbids all dim-5 operators
Modify auxiliary field equations of motion \[\rightarrow \text{ moduli space} \]

\[
d(n) = \overline{D}_{i}^{(-)} U_{i}(n) \quad \rightarrow \quad d(n) = \overline{D}_{i}^{(-)} U_{i}(n) + G \mathcal{O}(n) \mathbb{I}_{N}
\]

However, both U(1) and SU(N) \(\in \mathcal{O}(n) \) over-constrains system.
Backup: Dimensional reduction to 2d $\mathcal{N} = (8,8)$ SYM

Naive for now: 4d $\mathcal{N} = 4$ SYM code with $N_x = N_y = 1$

$A_4^* \rightarrow A_2^*$ (triangular) lattice

Torus **skewed** depending on $\alpha = N_t / L$

Modular transformation into fundamental domain
\rightarrow some skewed tori actually rectangular

Also need to stabilize compactified links
to ensure broken center symmetries

David Schaich (Liverpool)

Lattice MSYM

Southampton, 27 November 2019
Backup: 2d $\mathcal{N} = (8, 8)$ SYM Wilson line eigenvalues

Check ‘spatial deconfinement’ through Wilson line eigenvalue phases

Left: $\alpha = 2$ distributions more extended as N increases \rightarrow D1 black string

Right: $\alpha = 1/2$ distributions more compact as N increases \rightarrow D0 black hole
Backup: Static potential is Coulombic at all λ

String tension σ from fits to confining form $V(r) = A - C/r + \sigma r$

Slightly negative values flatten $V(r_I)$ for $r_I \lesssim L/2$

$\sigma \to 0$ as accessible range of r_I increases on larger volumes
Discretization artifacts visible at short distances where Coulomb term in \(V(r) = A - \frac{C}{r} \) is most significant

Danger of distorting Coulomb coefficient \(C \)
Backup: Tree-level improvement

Classical trick to reduce discretization artifacts in static potential

Associate $V(r)$ data with r from Fourier transform of gluon propagator

Recall

$$\frac{1}{4\pi^2 r^2} = \int_{-\pi}^{\pi} \frac{d^4 k}{(2\pi)^4} e^{ir \cdot k} \frac{k^2}{k^2} \quad \text{where} \quad \frac{1}{k^2} = G(k) \quad \text{in continuum}$$

$$A_4^* \quad \text{lattice} \quad \rightarrow \quad \frac{1}{r_i^2} \equiv 4\pi^2 \int_{-\pi}^{\pi} \frac{d^4 \hat{k}}{(2\pi)^4} \frac{\cos (i r_i \cdot \hat{k})}{4 \sum_{\mu=1}^{4} \sin^2 \left(\frac{\hat{k} \cdot \hat{e}_\mu}{2} \right)}$$

Tree-level lattice propagator from arXiv:1102.1725

\hat{e}_μ are A_4^* lattice basis vectors;

momenta $\hat{k} = \frac{2\pi}{L} \sum_{\mu=1}^{4} n_\mu \hat{g}_\mu$ depend on dual basis vectors
Backup: Tree-level-improved static potential

Significantly reduced discretization artifacts
Backup: Real-space RG for lattice $\mathcal{N} = 4$ SYM

Must preserve Q and S_5 symmetries \leftrightarrow geometric structure

Simple transformation constructed in arXiv:1408.7067

\[
\begin{align*}
U'_a(n') &= \xi U_a(n)U_a(n + \hat{\mu}_a) \\
\psi'_a(n') &= \xi [\psi_a(n)U_a(n + \hat{\mu}_a) + U_a(n)\psi_a(n + \hat{\mu}_a)]
\end{align*}
\]

Doubles lattice spacing $a \rightarrow a' = 2a$, with tunable rescaling factor ξ

Scalar fields from polar decomposition $U(n) = e^{\varphi(n)}U(n)$

\Rightarrow shift $\varphi \rightarrow \varphi + \log \xi$ to keep blocked U unitary

Q-preserving RG transformation needed

to show only one log. tuning to recover continuum Q_a and Q_{ab}
Backup: Smearing for Konishi analyses

Smear to enlarge (MCRG or variational) operator basis

APE-like smearing: $$\rightarrow (1 - \alpha) \rightarrow + \frac{\alpha}{8} \sum \nabla,$$

staples built from unitary parts of links but no final unitarization

Average plaquette stable upon smearing (right),
minimum plaquette steadily increases (left)
Spontaneous susy breaking means $\langle 0 \mid H \mid 0 \rangle > 0$ or equivalently $\langle Q O \rangle \neq 0$

Twisted superQCD auxiliary field e.o.m. \leftrightarrow Fayet–Iliopoulos D-term potential

$$d = \overline{D}_a U_a + \sum_{i=1}^F \phi_i \overline{\phi}_i - r I \mathbb{1}_N \leftrightarrow \text{Tr} \left[\left(\sum_i \phi_i \overline{\phi}_i - r I \mathbb{1}_N \right)^2 \right] \in H$$

Have F scalar vevs to zero out N diagonal elements

$\rightarrow N > F$ suggests susy breaking, $\langle 0 \mid H \mid 0 \rangle > 0$ \leftrightarrow $\langle Q \eta \rangle = \langle d \rangle \neq 0$