Overview and plan

- **Presentation goal:** Survey of recent work on maximally supersymmetric Yang–Mills (SYM) theories in $d < 4$ dimensions
- **Research goal:** Reproduce known results in perturb., holographic, etc. regimes then use lattice to access new domains

- Review lattice supersymmetry and (4d) twisted lattice $\mathcal{N} = 4$ SYM
- 1d SYM bosonic action (others’ work, 2007 through arXiv:1606.04951)
- 2d $\mathcal{N} = (8,8)$ SYM phase diagram and bosonic action (arXiv:1709.07025)
- Work in progress: 1d supersymmetric mass deformation; max-SYM in 3d and 4d

Quick review of 4d lattice $\mathcal{N} = 4$ SYM

- 16 spinor generators (‘supercharges’) Q^A_α and $\overline{Q}^A_{\dot{\alpha}}$ with $A = 1, \cdots, \mathcal{N}$
 \[
 \left\{ Q^A_\alpha, \overline{Q}^B_{\dot{\alpha}} \right\} = 2\delta^{AB}\sigma^\mu_{\alpha\dot{\alpha}} P_\mu \rightarrow \text{supersymmetry algebra broken on the lattice}
 \]

- Two ways to avoid impractical fine-tuning (will use both):
 1) Work in lower dimensions where theories are super-renormalizable
 2) Preserve closed sub-algebra of supersymmetries via topological twisting

- **Topological twisting:** (introduced for curved manifolds)
 \[
 Q^A_\alpha, \overline{Q}^B_{\dot{\alpha}} \rightarrow Q, Q_\mu, Q_{\mu\nu}, \overline{Q}_\mu, \overline{Q} \text{ in integer-spin reps of “twisted rotation group”}
 \]
 \[
 \text{SO}(4)_{\text{tw}} \equiv \text{diag} \left[\text{SO}(4)_{\text{euc}} \otimes \text{SO}(4)_R \right] \quad \text{with} \quad \text{SO}(4)_R \subset \text{SO}(6)_R
 \]

- More generally, for $2 \leq d \leq 5$
 \[
 \text{SO}(d)_{\text{tw}} \equiv \text{diag} \left[\text{SO}(d)_{\text{euc}} \otimes \text{SO}(d)_R \right]
 \]
 \[
 Q \geq 2^d \text{ supercharges} \rightarrow [Q/2^d] \geq 1 \text{ closed susy subalgebras } Q^2 = 0
 \]

- Reducing 10-dim. $\mathcal{N} = 1$ SYM to d dims. \rightarrow \text{SO}(10 – d) R symmetry

 Fields: 16 fermions, d-component gauge field and $10 – d$ scalars,
 all massless and in adjoint rep

- For $2 \leq d \leq 4$, discretize on A_d^* lattice with $d + 1$ basis vectors
 (familiar triangular lattice for $d = 2$)
“D0 brane” SYM quantum mechanics (de Wit–Hoppe–Nicolai, 1988)

- Reduced to the point that twisting both impossible and unnecessary
 Only temporal component of gauge field remains, plus 9 scalars \(X^A \)
 \[
 S_0 = \frac{N}{2\lambda} \int dt \, \text{Tr} \left[(D_t X^A)^2 + \Psi^\alpha D_t \Psi^\alpha + \frac{1}{2} [X^A, X^B]^2 + i \Psi^\alpha \gamma^A_{\alpha\beta} [\Psi^\beta, X^A] \right]
 \]
 with \(A, B = 1, \cdots, 9 \) and \(\alpha, \beta = 1, \cdots, 16 \)

- Finite-temperature system holographically dual to stringy black hole geometry
- Temperature and dimension-3 \(\text{ motives coupling} \rightarrow \text{ dim'less } T = T_{\text{dim}}/\lambda^{1/3} \equiv 1/r_\beta \)
- Low \(T \ll 1 \) and large number of colors \(N \rightarrow \text{ classical supergravity (SUGRA)} \)
 Large \(N \) suppresses string quantum \((g_s) \) corrections
 Low temperatures (large \(\lambda \)) suppress \(\alpha' \) corrections (string size \(\propto \sqrt{\alpha'} \))
- **Numerical state of the art:** gauge groups SU(16)–SU(32) with \(L \) up to 32
- Investigate dual black hole internal energy \(\leftrightarrow \) SYM bosonic action
- **Fits to SUGRA prediction** \[E/N^2 = a_0 T^{2.8} + a_1 T^{4.6} + a_2 T^{5.8} + \ldots, \text{ with } a_0 = 7.41 \]
 reproduce \(a_0 = 7.4(5) \) and predict unknown \(a_1 = -10.0(4), \quad a_2 = 5.8(5) \)
Two-dimensional $\mathcal{N} = (8,8)$ SYM

- Naive dimensional reduction of twisted 4d $\mathcal{N} = 4$ SYM

$$S = \frac{N}{4\lambda} \mathcal{Q} \int d^4x \ Tr \left[\chi_{ab} F_{ab} + \eta [\mathcal{D}_a, \mathcal{D}_d] - \frac{1}{2} \eta d + \epsilon_{abcde} \mathcal{D}_c \chi_{ab} \right]$$

$a, b = 1, \cdots, 5$ now include ‘flavor’ and three A_2^* basis vectors

- Space-time is torus with $r_\beta = 1/t = \beta \sqrt{\lambda}$, $r_L = L \sqrt{\lambda}$ and aspect ratio $\alpha = r_L/r_\beta$ → more complicated phase diagram

- **Solid expectations** for phase transitions at both high and low temperatures

 Same sort of transition in each limit, with different dependence on r_β vs. r_L

 (All phases still thermally deconfined \leftrightarrow dual stringy black holes)

- **High temperatures**: Bosonic quantum mechanics transition

 Wilson line order parameter $W_L = \frac{1}{N} \left| \langle \text{Tr} \left[\mathcal{P} e^{i \oint L A} \right] \rangle \right|$ around spatial circle

 $W_L = 0$ at large r_L (‘spatial confinement’) \rightarrow $W_L \neq 0$ (‘deconf.’) at small r_L

 (Order of transition debated:
 first-order vs. strong second-order plus nearby Gross–Witten–Wadia)

- **Low temperatures**: Large-N classical SUGRA transition

 Large-r_L homogeneous D1 ‘black strings’ with horizon $\mathbb{R} \times S^7$

 \rightarrow small-r_L D0 black holes with horizon S^8 localized on spatial circle

 (Radial direction U and time fill out 10 dimensions in total)

 Type IIB SUGRA has winding mode instability at small $r_L \lesssim c_{GL} r_\beta^2$,

 related to Type IIA classical Gregory–Laflamme transition by T duality

- Non-orthogonal basis vectors of triangular lattice

 \rightarrow **skewed** tori, “generalized” thermal ensemble

- **Restricted** $\text{SL}(2,\mathbb{Z})$ modular transformations describe same torus geometry

 despite sometimes changing skewed \rightarrow rectangular

 $$\left(\begin{array}{c} \bar{L}' \\ \bar{\beta}' \end{array} \right) = M \cdot \left(\begin{array}{c} \bar{L} \\ \bar{\beta} \end{array} \right), \quad M = \left(\begin{array}{cc} a & 2n \\ c & 2m - 1 \end{array} \right) \in \text{SL}(2,\mathbb{Z})$$

 with $n, m, c \in \mathbb{Z}$ \rightarrow $a \in 2\mathbb{Z} - 1$

- **Numerical results**: Horizon \leftrightarrow distribution of Wilson line eigenvalue phases

 In D0 / spatially deconfined phase, distribution more localized as N increases,

 $$E/(N^2 \lambda) \propto t^{3.2}$$ from leading-order SUGRA

 In D1 / spatially confined phase, distribution more uniform as N increases,

 $$E/(N^2 \lambda) \propto t^3$$ from leading-order SUGRA

- Large-N continuum extrapolations remain to be done in this case
Deformed quantum mechanics (Berenstein–Maldacena–Nastase, ’02)

- Dim’l reduction of 10d plane-wave background preserving all 16 supersymmetries
 \[S = S_0 - \delta S \]
 \[\delta S = N 2\frac{\mu}{\lambda} \int dt \text{Tr} \left[\frac{\mu^2}{3}(X^i)^2 + \frac{\mu^2}{6}(X^a)^2 + \frac{\mu}{24} \Psi^\alpha \epsilon_{ijk} (\gamma^i \gamma^j \gamma^k)_{\alpha\beta} \Psi^\beta + i \frac{2\mu}{3} \epsilon_{ijk} X^i X^j X^k \right] \]
 with \(i, j, k = 1, 2, 3 \) and \(a = 4, \cdots, 9 \)
 \(\rightarrow \) dim’ful \(\mu \neq 0 \) breaks SO(9) R symmetry to SO(3)×SO(6)

- Deformation lifts moduli space \(\rightarrow \) discrete set of vacua
 Can also regulate low-\(t \) instability, though this may need small \(\mu \sim 1/N \)

- Now have non-trivial phase instability in plane of \(T/\mu \) vs. dim’less \(g = \lambda/\mu^3 \)
 Can consider strong coupling at both large and small \(T/\mu \)

- Phase diagram / transition “qualitatively similar” to 2d \(\mathcal{N} = (8, 8) \), [arXiv:1411.5541]
 although lose thermal deconfinement \(\rightarrow \) energy scales \(\propto N^0 \) rather than \(N^2 \)
 (no dual black holes?)

- First-order Hagedorn transition at \(g = 0 \)
 Hawking–Page-like transition as \(g \to \infty \)

Higher dimensions, \(d = 3 \) and 4

- Empirically, larger \(d \) allow low-temperature stability with smaller \(N \)
 Compare \(16 \leq N \) for quantum mechanics vs. \(6 \leq N \leq 16 \) for 2d \(\mathcal{N} = (8, 8) \) SYM
 Also expect small corrections \(\propto 1/N^2 \) for adjoint fermions in 4d gauge theories

- Interpret as trading d.o.f. between space-time volume and internal large \(N \)?

- Work in progress: 3d 16-supercharge SYM in uniform D2 phase, \(4 \leq N \leq 6 \)
 Preliminary consistency with leading SUGRA prediction \(E/(N^2 \lambda^3) \propto t^{10/3} \)

- For the future: “3/4 problem” in four-dimensional \(\mathcal{N} = 4 \) (16-supercharge) SYM
 Perturbative energy \(1 \times cN^2T^4 \) for small \(\lambda \to 0 \)
 Holographic energy \(\frac{3}{4} \times cN^2T^4 \) for large \(1 \ll \lambda \ll N \)
This work considers gauge groups SU(N) with $16 \leq N \leq 32$ on lattices with up to $L = 32$ sites. These two plots fix the dimensionless temperature $T = T_{\text{dim}}/\lambda^{1/3} = 0.5$ and show both individual and combined extrapolations to the limits $N^2 \to \infty$ and $L \to \infty$. The latter is the continuum limit in which the lattice UV cutoff is removed while the large-N limit suppresses string quantum (g_s) corrections in the dual gravitational calculation.

These fits correctly reproduce the leading $a_0 = 7.41$ predicted by SUGRA, and provide lattice predictions for the unknown coefficients a_i for $i \geq 1$. The two colored curves without error bands are results from earlier studies with smaller N and L.

Figure 2: Extrapolated lattice results for the dual black hole internal energy of D0 brane quantum mechanics, from arXiv:1606.04951, using combined $N^2 \to \infty$ and $L \to \infty$ extrapolations like the one shown in Fig. 1 for $T = 0.5$. The results are consistently below the leading-order SUGRA prediction (solid black line), but can be fit to expressions including subleading corrections (three colored curves with error bands).
Figure 3: Schematic phase diagram for two-dimensional $\mathcal{N} = (8,8)$ SYM on an $r_\beta \times r_L$ torus, from arXiv:1709.07025, showing the two limits where first-order transitions are expected. At high temperatures (small $r_\beta = 1/t$) the system reduces to a simple one-dimensional bosonic quantum mechanics (BQM) with a first-order deconfinement transition at small r_L. A similar first-order deconfinement transition is predicted by holography at low temperatures (in the large-N limit), with the large-r_L homogeneous black string (D1) phase becoming unstable and collapsing to a localized black hole (D0) phase as r_L decreases.
Figure 4: The complex modular parameters $\tau = \alpha \gamma + i \alpha \sqrt{1 - \gamma^2}$ for skewed tori with skewing parameter $\gamma = -1/2$ and different aspect ratios α given by the labels on the red points, from arXiv:1709.07025. When τ falls outside the shaded fundamental domain, a restricted SL(2, \mathbb{Z}) modular transformation gives the equivalent τ' in the fundamental domain (blue points). This reveals a few cases ($\alpha = 1/2, 4$ and 8) for which the fundamental representation of the torus geometry is rectangular, $\text{Re}(\tau') = 0$.
Figure 5: Numerical lattice results for two-dimensional $\mathcal{N} = (8,8)$ SYM, from arXiv:1709.07025. **Top:** Representative signals for the ‘spatial deconfinement’ transition in the spatial Wilson line (left) and its susceptibility (right), for fixed aspect ratio $\alpha = L/N_t = 4$. In the deconfined small-r_L phase at small $r_\beta = r_L/\alpha = 1/t$, the Wilson line is large and independent of N, while it vanishes in the large-N limit at large r, with a clear peak in the susceptibility at the transition between these two phases. **Center:** The resulting predictions for phase transitions for various α, compared to the expected asymptotic behavior from Fig. 3. There is good agreement at high temperatures, and reasonable consistency at lower temperatures. **Bottom:** The dual black hole internal energy, as in Fig. 2 but without large-N or continuum extrapolations. The $\alpha = 1/2$ data are consistent with the leading gravitational prediction $E/(N^2\lambda) \propto t^{3/2}$ for the D0 phase (left), while those for $\alpha = 2$ are consistent with $E/(N^2\lambda) \propto t^3$ for the D1 phase (right).
Figure 6: The distributions of Wilson line eigenvalue phases for two-dimensional $\mathcal{N} = (8,8)$ SYM (from arXiv:1709.07025) indicate which side of the transition we are on for a given temperature $t = 1/r_\beta$ and aspect ratio $\alpha = L/N_t$. For $\alpha = 1/2$ and $t \approx 0.46$ (left), the distributions become more localized as N increases, corresponding to the D0 phase (and the highest \otimes in the central plot of Fig. 5). For $\alpha = 2$ and $t \approx 0.3$, the distributions become more uniform as N increases, corresponding to the D1 phase (far beyond the right edge of the central plot in Fig. 5).

Figure 7: Preliminary lattice results for the dual black hole internal energy of three-dimensional 16-supercharge SYM in the uniform D2 phase, as in the bottom plots of Fig. 5. Despite the smaller $N \leq 6$ the results are quite close to the leading gravitational prediction $E/(N^2\lambda^3) \propto t^{10/3}$.